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1 One-Dimensional Systems

• This class of biological systems can be modelled as an ODE of the form

dx

dt
= f(x), x(0) = x0

where x(t) is a real-valued function of time t and f(x) is a real-valued function of x.

1.1 Existence and Uniqueness Theorem

• It turns out a unique solution exists if f(x) is sufficiently smooth.

• If f(x) and f ′(x) are continuous on an open interval R and x0 ∈ R, then the initial value
problem has a unique solution x(t) on some time interval (−τ, τ) about t = 0.

• The solution only applies over the interval (−τ, τ) and not necessarily for all time.

1.2 Fixed Points and Their Stability

1.2.1 Fixed Points

• Fixed points are values of x for which ẋ = f(x) = 0.

• If points near a fixed point x move towards it, then x is stable. If points move away from
it, then x is unstable. If in one direction points move towards it and on the other points
move away from it, then it is half-stable.

• We can construct a phase portrait depicting the space (x, f(x)) and check the flow of
trajectories based on the fixed points. The flow moves to the right when f(x) > 0 and to
the left when f(x) < 0.

1.2.2 Linear Stability Analysis

• If we expand the Taylor series for f(x) around a fixed point x∗, ignore the higher order
terms, and denote η := x− x∗ as the perturbation around x∗, we get

dη

dt
= f ′(x∗)η

• If f ′(x∗) > 0, then x∗ is an unstable fixed point. That is since η grows over time.

• If f ′(x∗) < 0, then x∗ is a stable fixed point. That is since η decays over time.

• When f ′(x∗) = 0, stability cannot be determined without examining the higher order terms
of the Taylor series, and so this tool is not suitable.
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1.3 Bifurcations

• Often we have parameters in f(x) that allow us to control the system.

• If a change in some parameter changes the number or behaviour of fixed points, we say a
bifurcation has occurred.

• The parameter value at which a bifurcation occurs is called the bifurcation point.

• In 1D systems, only three types of bifurcations can occur. They can be described using
their normal forms.

• If a system can be expressed in terms of these normal forms, then we can say such a
bifurcation exists.

• A bifurcation diagram is a plot on the (r, x) space where r is the control parameter
responsible for the bifurcation.

1.3.1 Saddle-node bifurcation

• Here, a pair of fixed points, one stable and one unstable, are either created or destroyed.

• It is given by the normal form
dx

dt
= r ± x2

• The bifurcation diagram is a parabola when r ≤ 0 and none when r > 0.

1.3.2 Transcritical bifurcation

• Here, a pair of fixed points, one stable and one unstable, exchange stability.

• It is given by the normal form
dx

dt
= rx− x2

• The bifurcation diagram involves the x-axis and a line exchanging stability at (0, 0).

1.3.3 Pitchfork bifurcation

• This bifurcations comes in two flavors: supercritical and subcritical.

• In the supercritical case, one stable fixed point turns into two stable and one unstable fixed
points. It is given by the normal form

dx

dt
= rx− x3

• The bifurcation diagram is given by a right-facing pitchfork with the middle fork as unstable.

• In the subcritical case, one unstable fixed point turns into two unstable and one stable
fixed points. It is given by the normal form

dx

dt
= rx+ x3

• The bifurcation diagram is given by a left-facing pitchfork with the middle fork as stable.
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1.4 One dimensional systems in biology

1.4.1 Logistic growth

• A primitive formulation for population size is modelling under exponential growth, taking
into account the per capita birth and death rates b and µ. Deriving the ODE yields

dx

dt
= rx, x(0) = x0

where r = b− µ is the net growth rate. The corresponding solution is given by

x(t) = x0e
rt

• Here, the population either decays to zero or grows without bound. To fix this, we consider
a parameter K which refers to the maximum size the population can reach.

• We can encode the growth through a (1 − x/K) term which is zero when x = K and
arrive at the logistic equation

dx

dt
= rx

(
1− x

K

)
where r is the intrinsic growth rate and K is the carrying capacity. The corresponding
solution is given by

x(t) =
Kx0

x0 + (K − x0)e−rt

• K can be interpreted as the maximum population size that can be maintained by the
available resources.

• Its fixed points are given by an unstable x∗ = 0 and a stable x∗ = K.

1.4.2 SIS model

• We model the spread of diseases on a susceptible population S, and an infective population
I, where N = S + I is fixed. The dynamics can be expressed as

dS

dt
= − λSI/N︸ ︷︷ ︸

get infected

+ γI︸︷︷︸
recovery

+ δN︸︷︷︸
birth

− δS︸︷︷︸
death

,

dI

dt
= λSI/N︸ ︷︷ ︸

get infected

− γI︸︷︷︸
recovery

− δI︸︷︷︸
death

where λI/N is the infection rate per susceptible, γ is the recovery rate per infective, and δ
is the birth/death rate per-capita,

• Substituting S = N − I, we can rearrange the terms in the second equation as

dI

dt
= (λ− γ − δ)I

(
1− λ

N(λ− γ − δ)
I

)
which is essentially a logistic equation with parameters r = λ− γ − δ and K = N(λ−γ=δ)

λ

1.4.3 Logistic growth with harvesting

• Previously, we assume our system is closed, we can modify the logistic equation to get

dx

dt
= rx

(
1− x

K

)
−H

where H is the harvesting rate.

• There is a saddle-node bifurcation at H = rK/4. When H > rK/4, the roots are complex
and there are no fixed points. When H ≤ rK/4, then there is one stable and one unstable
fixed point.
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1.4.4 The spruce budworm

• We model the population of budworms N with the equation

dN

dt
= rN

(
1− N

K

)
− p(N)

where p(N) is the rate of change in the budworm population.

• The predation can be dsescribed by the function

p(N) =
BN2

A2 +N2

where B > 0 is the predation rateas N → ∞ and A > 0 is a measure of the threshold
population size where predation suddenly increases.This leaves us with

dN

dt
= rN

(
1− N

K

)
− BN2

A2 +N2

• By setting N = Ax, τ = A
B t, R = rA

B , and k = K
A , we get the non-dimensionalised form

dx

dτ
= Rx

(
1− x

k

)
− x2

1 + x2

• Clearly, x∗ = 0 is a fixed point. Other fixed points are governed by

R
(
1− x

k

)
=

x

1 + x2

which produces three additional fixed points a < b < c.

• If R is decreased, a and b combine and vanish, leading to a saddle-node bifurcation.

• If R is increased, b and c combine and vanish, leading to a saddle-node bifurcation as well.

• The model exhibits hysterisis. That is, suppose the system is at a fixed point x∗
a. We vary

our parameters, causing a bifurcation and the system to be at x∗
c instead. If we modify the

parameters back, we observe the system does not go back to its original fixed point.

• The model also exhibits bistability. That is, the presence of two stable fixed points.

1.4.5 Chemical kinetics

• Suppose we have two molecules A and B that react to form another molecule C at rate
k1. We express this symbollically as

A+B
k1−→ C

• Writing the concentration of the molecules as a = [A], b = [B], c = [C], the law of mass
action states that the reaction rate is proportional to the product of the concentration of
the reactants. Thus the rates are given by

dc

dt
= k1ab

da

dt
= −k1ab

db

dt
= −K − 1ab

• More generally, suppose there are n molecules X1, . . . , Xn with concentrations x1, . . . , xn

respectively, and the molecules can undergo r reactions, each of which may be expressed as

sR1jX1 + sR2jX2 + · · ·+ sRnjXn
kj−→ sP1jX1 + sP2jX2 + · · ·+ sPnjXn

for j = 1, . . . , r, where sRij and sPij are the stoichiometric coefficients on the reactant and

product sides for species i and reaction j. Writing sij = sPij − sRij , the law of mass action
gives

dxi

dt
=

r∑
j=1

sijkj

n∏
l=1

xsRlj
l
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1.4.6 Michaelis-Menten model

• The most basic model for enzymatic reactions is the process proposed by Michaelis and
Menten involving substrate S, enzyme E, a complex SE, and a product P . The reaction
is described by

S + E
k1

⇋
k−1

SE
k2−→ P + E

• Denoting c = [SE] as the concentration of the complex, we have the differential equations

dc

dt
= k1se− (k−1 + k2)c,

de

dt
= −k1se+ (k−1 + k2)c,

ds

dt
= −k1se+ k−1c,

dp

dt
= k2c

• Since d(c+ e)/dt = 0, then c+ e = e0 and, as p only depends on c, then we only need to
consider the two coupled differential equations

dc

dt
= k1e0s− (k1s+ k−1 + k2)c,

ds

dt
= −k1e0s+ (k1s+ k−1)c

with initial condition s(0) = s0 and recall c(0) = 0.

• This can be non-dimensionalised into

ϵ
dv

dτ
= u− (u+K)v,

du

dτ
= −u+ (u+K − λ)v

with initial conditions u(0) = 1 and v(0) = 0.

• We can use a quasi-steady approximation by assuming that ϵ ≪ 1 and so the above
reaction occurs extremely quick compared to the bottom. We can then assume it is already
in a steady state and thus

0 = u− (u+K)v

leading to a 1D system
du

dτ
= −λ

u

u+K

• For u > 0, the RHS −λu/(u+K) < 0 and thus u decreases monotonically with u = 0 as
an asymptotically stable fixed point.

• Whereas, considering a non-dimensionalised version of the product p = s0w,

dw

dτ
= λ

u

u+K

tells us the product increases monotonically in time with a rate that decreases as the
substrate u is depleted.

2 Multi-dimensional Systems

• This class of models are concerned with n-dimensional systems expressed as

dxi

dt
= fi(x1, . . . , xn)

for i = 1, . . . , n, which in vector form becomes

dx

dt
= f(x)

where x = (x1, . . . , xn)
T and f = (f1(x), . . . , fn(x))

T .
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2.1 Existence and Uniqueness Theorem

• If the functions fi(x) and their first derivative ∂fi/∂xj are continuous for −∞ < xk < ∞,
then for any initial condition

x(0) = x0

there exists a unique solution for a small time interval −δ < t < δ. In particular, if f is
bounded linearly, i.e.

∥f(x)∥ ≤ c1∥x∥+ c2

for some positive constants c1, c2, then the solutions can be uniquely extended to all
−∞ < t < ∞.

2.2 Fixed points and their stability

• A fixed point is said to be stable if ∀δ1, ∃δ2 such that if ∥x(0) − x∗∥ < δ2, then the
solution exists for all t > 0 and ∥x(t)− x∗∥ < δ1 for all t > 0.

• A stable fixed point is asymptotically stable if any solution x(t) with x(0) near x∗

converges to x∗ ast t → ∞.

• A fixed point is unstable if it is not stable.

2.2.1 Stability

• We can linearise f about x∗ such that

f(x) = A(x− x0) + h.o.t.

where A is the Jacobian matrix whose elements are given by

aij =
∂fi
∂xj

(x∗)

• (Stability theorem) Let x∗ be a fixed point and linearise f(x) as above. If all the
eigenvalues of the Jacobian matrix A have negative real parts, then x∗ is asymptotically
stable, and ∥x(t)− x∗∥ ≤ ce−µt for all t > 0 if ∥x(0)− x∗∥ is sufficiently small.

◦ If at least one of the eigenvalues has a positive real part, then x∗ is unstable.

• Solving for τ = trace(A) and ∆ = det(A), we find that

◦ In the real case, i.e. τ2 − 4∆ > 0, we have

1. stable node if λ1, λ2 < 0

2. unstable node if λ1 > 0, λ2 > 0

3. saddle point if λ! > 0, λ2 < 0

◦ In the degenerate case, i.e. τ2 − 4∆ = 0, we have

1. stable star if λ1 = λ2 < 0

2. unstable star if λ1 = λ2 > 0

◦ In the complex case, i.e. τ2 − 4∆ > 0, we have

1. stable spiral if ℜ(λ1) = ℜ(λ2) < 0

2. unstable spiral if ℜ(λ1) = ℜ(λ2) > 0

3. centre if ℜ(λ1) = ℜ(λ2) = 0.

2.2.2 Phase portraits

• In two dimensions, the phase portrait typically includes fixed points, closed orbits, indication
of fixed point stability.

• The nullclines are curves where either dx1/dt = 0 or dx2/dt = 0. As they act as the
boundary between when dx1/dt < 0 and dx1/dt > 0, the flow of trajectories can be
established.

6



2.3 Multidimensional models of biological processes

2.3.1 SIS model for two interacting populations

• We adapt the SIS model to include a distinction between male and female populations in
the case of venereal disease transmission.

dS

dt
= −rSI∗ + aI

dS∗

dt
= −r∗S∗I + a∗I∗

dI

dt
= rSI∗ − aI

dI∗

dt
= r∗S∗I − a∗I∗

• Similarly before, since S = N − I and S∗ = N∗ − I∗, then we can simplify

dI

dt
= rI∗(N − I)− aI

dI∗

dt
= r∗I(N∗ − I∗)− a∗I∗

• Non-dimensionalising, we get

du

dτ
= Rv(1− u)− u = f1(u, v)

dv

dτ
= R∗u(1− v)−A∗v = f2(u, v)

• This yields the nullclines

v =
u

R(1− u)
, u =

A∗v

R∗(1− v)

• Solving for the fixed points, we find fixed points

(u∗, v∗) = (0, 0),

(
R−A∗

R∗(R+ 1)
,

R∗ −A∗

R(R∗ +A∗)

)
where the latter fixed point only exists when R∗R−A∗ > 0, known as a threshold condition.
Evaluating the Jacobian at the above fixed points and solving for their eigenvalues, we find
that the trivial fixed point is unstable and the non-trivial fixed point is stable.

• Expressing the threshold as (rN/a)(r∗N∗/a∗) > 1, we can interpret this as: an epidemic
can be avoided if the product of the maximum number of males that are infected for each
infective female rN/a and r∗N∗/a∗ is less than one.

2.3.2 Genetic control system

• We can model the protein concentration p with respect to the mRNA concentration m,
and their degrading rates k1p and k2m. We also assume that mRNA presence leads to the
creation of a protein with rate k3m. The resulting ODE is then

dp

dt
= k3m− k1p

dm

dt
= h1

p2

H2 + p2
− k2m

• Non-dimensionalising, we get

du

dτ
= av − bu

dv

dτ
=

u2

1 + u2
− v

7



• This yields the nullclines

v =
b

a
u, v =

u2

1 + u2

• Setting α = b/a and solving for the fixed points, we find three solutions

(u∗, v∗) = (0, 0),

(
1±

√
1− 4α2

2α
,
1±

√
1− 4α2

2

)

• Finding the Jacobian, and evaluating at (0, 0), we find that it is stable. Solving for the
eigenvalues of the other two fixed points, we find one is stable and the other is unstable.

• We find that bistability indicates that some initial concentration of protein and mRNA can
see to it that the protein production to goes to zero or sustains itself at a level. This allows
the gene to have a switching mechanism.

2.3.3 Competition between populations

• We model two populations of species competing for the same resource. We assume that in
isolation each species evolves according to logistic growth and that when the other species
is present, the death rate is proportional to the population size of the other. We thus have

dN1

dt
= r1N1

(
1− N1

K1
− b12

N2

K1

)
dN2

dt
= r2N2

(
1− N2

K2
− b21

N1

K2

)
• Non-dimensionalising, we get

du1

dτ
= u1(1− u1 − a12u2)

du2

dτ
= ρu2(1− u2 − a21u1)

• This yields the nullclines

u1(1− u1 − a12u2) = 0, ρu2(1− u2 − a21u1) = 0

• We find that based on the values of a12 and a21, the nullclines may either intersect or not.
In fact, there are two cases when they do and two when they don’t. There are four possible
fixed points

(uast, v∗) = (0, 0), (0, 1), (1, 0),

(
1− a12

1− a12a21
,

1− a21
1− a12a21

)
• In three of the four cases, one of the species goes extinct. This competition-induced

extinction is known as the principle of competitive exclusion. We find that this depends
on the competition coefficients and carrying capacities.

2.3.4 Predator-Prey systems (Lotka-Volterra)

• We aim to model populations of preys N and predators P that interact with each other.
This can be written as

dN

dt
= aN − bNP

dP

dt
= −dP + cNP

where a, b, c, d are positive constants. The prey population grows with birth rate aN , while
the predator population dies with rate −dP . Interactions between two populations allows
the predator population to grow at rate cNP and the prey population to decrease with
rate −bNP .
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• Non-dimensionalising, we get

du

dτ
= u(1− v)

dv

dτ
= αv(u− 1)

• We find the fixed points
(u∗, v∗) = (0, 0), (1, 1)

• Solving for the Jacobian evaluated on the fixed points, we find that (0, 0) is unstable but
that (1, 1) is a centre (of which linear analysis alone is insufficient).

• The solutions to the above equations show oscillatory behaviour occurring close to the
fixed point of which persists even from far away. In fact, changing the initial condition
defines each of these orbits.

• From this we can say that there is no natural oscillation in the population levels as different
initial population sizes yield different oscillations. We also find that lowering the initial
predator population results in larger peaks in their population size.

3 Oscillations and bifurcations

3.1 Existence of closed orbits (Poincaré-Bendixson Theorem)

• Suppose that

1. R is a closed, bounded subset of the plane

2. dx/dt = f(x) is a continuously differentiable vector field on an open set containing R

3. R does not contain any fixed points

4. There exists a trajectory C confined in R (it starts and remains in R forever)

Then either C is a closed orbit, or it spirals towards a closed orbit at t → ∞.

• Typically, the fourth condition can be shown by choosing an R for which it is a trapping
set, meaning that the flow points inward along the boundary ∂R, i.e. f(x) · n(x) < 0 for
all x ∈ ∂R.

3.1.1 More-realistic predator-prey system

• To fix the biologically unrealistic and mathematically undesirable properties of the Lotka-
Volterra system, we can incorporate logistic growth and a nonlinear predation term

dN

dt
= N

(
r

(
1− N

K

)
− k

P

N +D

)
dP

dt
= sP

(
1− h

P

N

)
where r,K, k,D, s, h are positive constants.

• Here, the predation term is similar to spruce-budworm in that for low N , predation increases
as the prey population increases but for large N predation is largely independent of N .
Whereas, the predator population follows a logistic-like equation where the carrying capacity
is proportional to the size of the prey population.

• Non-dimensionalising, we get

du

dτ
= u(1− u)− auv

u+ d
dv

dτ
= bv

(
1− v

u

)
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• We find the nullclines

u = 0, v =
(1− u)(u+ d)

a
, v = u, v = 0

• We may construct a closed regionR as a rectangle with endpoints (0, 0), (0.99, 0), (0, 1), (0.99, 1).
Solving for the change in u and v on the boundaries, we find that the flow moves inwards.

• However, this set contains a fixed point. To account for this, we puncture the set by
introducing an infinitesimally small circle around it and show that the flow still moves
inwards. For this to occur, the point must be an unstable fixed point (saddle does not
work). Looking at the Jacobian, we can find conditions for when this happens.

• A supercritical Hopf bifurcation occurs as we turn from getting a stable fixed point into
an unstable node and a stable limit cycle.

3.2 Relaxation oscillators

• The Poincaré-Bendixson theorem could only suggest where a limit cycle exists but does
not tell us anything about the radius, shape, nor period of the orbit.

• To do so, we consider a one-dimensional system

du

dt
= f1(u; v)

that exhibits bistability for a range of parameter v. We turn this into another variable and
consider the system

du

dt
= f1(u, v)

dv

dt
= ϵf2(u, v)

• When 0 < ϵ ≪ 1, then we can consider a quasi-steady approximation and so the solution
will follow the nullcline f1(u, v) = 0 until it reaches some point where it leaves the nullcline.
Since v is a slow variable, the trajectory keeps a constant v and leaps to the other end of
the nullcline moving in the opposite direction. Once again it flows and leaps back, forming
a relaxation oscillator limit cycle.

3.3 Fitzhugh-Nagumo model

• The dimensionless version of which is given by

dv

dt
= f(v)− w + Ia

dw

dt
= bv − γw

where f(v) = v(a− v)(v − 1) and v and w represent the membrane potential and the ion
conductance respectively.

• Here, v is the fast variable, whereas w is the slow variable. This exactly produces a
relaxation oscillator whose orbit changes shape as parameters are modified.

• To approximate the period of the orbit, we only consider places where w is changing as the
jumps between nullclines are near instantaneous.

1. First, we determine the local minima and maxima of the nullcine by considering
df/dv = 0, say (v−, w−) and (v+, w+)

2. Next, we draw (horizontal as v is fast) lines from (v−, w−) and see where they intersect
with the other nullcine, say (v∗, w−). Similarly, say we end up at (v+ − 1 + a/2, w+)
from (v+, w+).
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3. We compute the time T1 it takes for the solution to move from v∗ to v+ and time T2

for the solution to move from 1 to v− along the nullclines. We do so by separating
and integrating the differential equation for the slow variable, i.e.∫ w(v+)

w(v∗)

dw

v − w
=

∫ T1

0

γ dt

then performing a substitution for dv and solving for T1.

4. The total period is then given by T = T1 + T2.

3.4 Bifurcations

• We extend our idea of bifurcations to higher dimensions, particularly in the 2D case.

3.4.1 Saddle-node, transcritical and pitchfork bifurcations

• The three types of bifurcations found in one-dimensional systems can be extended to two
dimensions with the addition of the equation

dy

dt
= −y

This requires the flow to approach the x-axis for which the behaviour is similar to the
one-dimensional case.

3.4.2 Hopf Bifurcations

• This bifurcation comes in two flavours: supercritical and subcritical.

◦ The supercritical Hopf bifurcation involves a stable spiral becoming unstable simul-
taneously as a limit cycle emerges from it.

◦ The subcritical Hopf bifurcation involves a stable spiral surrounded by an unstable
cycle becoming unstable when the cycle collapses in on the fixed point.

• By performing a weakly nonlinear analysis of the system, i.e. expanding f(x;µ) to cubic
order, solving for the eigenvectors of the Jacobian to derive the Stuart-Landau equation,
and working in polar coordinates, we find that the Hopf bifurcation can be viewed as a
pitchfork bifurcation for the radius of the limit cycle.

• Finding the fixed point corresponding to the radius, we find an approximate radius for the
stable limit cycle.

3.4.3 Hopf bifurcation in the FItzhugh-Nagumo model

• Given the set of equations

dv

dt
= f(v)− w + Ia

dw

dt
= γ(v − w)

where f(v) = v(a− v)(v − 1).

• Finding the Jacobian and its eigenvalues, we derive an expression for which the real roots
are zero and we can solve for the frequency given by

ω2 = γ(1− γ)

• When a Hopf bifurcation occurs, the fixed point will change from a stable spiral to an
unstable spiral. Thus, at the bifurcation, we must have ℜ(λ±) = 0, and we write λ± = ±iω
where ω is the frequency.

• We can obtain a very good approximation of the period through T = 2π/ω.
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4 Spatial dynamics

• We attempt to introduce spatial variables into our models to efficiently capture spatial
constraints involved in practice.

4.1 Reaction-diffusion equations

• We develop the theory first for x ∈ R3 and then reduce it to cases of x ∈ R and x ∈ R2.

• Consider an arbitrary region in space Ω ⊂ R3 with outward-facing unit normal n̂(x) of the
boundary ∂Ω. The total amount of chemicals in Ω at time t is given by∫

Ω

u(x, t)d3x

• This quantity changes in two ways: by evolving under some function f(u,x, t) within
Ω or entering and leaving Ω through its boundary with motion given by the vector field
mathbfJ(x, t). Thus

d

dt

∫
Ω

u(x, t)d3x =

∫
Ω

f(u,x, t)d3x−
∫
∂Ω

J(x, t) · n̂(x)dS

where the latter integrand is the flux into Ω.

• Simplifying this by pushing the time-derivative inwards (since Ω does not change in time)
in the LHS, using the divergence theorem to rewrite the second integral, and vanishing the
integrand, we arrive at

∂u

∂t
= f −∇∇∇ · J

• We consider the case when J describes the tendency for u to move from regions with
higher values to lower values, i.e. in the direction opposite its gradient

J = −D∇∇∇u

where D is a positive constant called the diffusion coefficient. We thus arrive at

∂u

∂t
= f +D∇∇∇2u

4.2 Fisher-Kolmogorov (FK) Equation

• We model the spread of an advantageous gene mutation in a population. Here, we have

f(u) = ku(1− u)

which is logistic growth with unit carrying capacity where u is the percentage of the
population carrying the advantageous gene.

• We also consider the case of one spatial dimension so that ∇2 → ∂2/∂x2 yielding

∂u

∂t
= ku(1− u) +D

∂2u

∂x2

• Non-dimensionalising, we get

∂u

∂τ
= u(1− u) +

∂2u

∂X2

12



4.2.1 Travelling waves

• Since u = 0 and u = 1 are fixed points of the logistic equation

du

dτ
= u(1− u)

we say that these are homogeneous steady solutions of the spatially extended system

• We consider the FK equation with the conditions that

u → 1 as X → −∞, u → 0 as X → ∞

which requires the solution to transition from u = 1 to u = 0 over some region of space.

• Expecting that the transition region will move to the right, we search for a travelling wave
solution which has the form

u(X, τ) = U(ξ), ξ = X − cτ

where the constant c ≥ 0 is the wave speed, which is yet to be determined. This solution
can be viewed as having a fixed shape shifted to the right by amount cτ at time τ .

• We have from this ansatz,

∂u

∂τ
= −c

dU

dξ
,

∂2u

∂X2
=

d2U

dξ2

which turns the FK equation into the second-order ODE

d2U

dξ2
= −U(1− U)− c

dU

dξ

that can be expressed as a system of first-order ODEs with V = dU/dξ

dU

dξ
= V

dV

dξ
= −U(1− U)− cV

• Performing linear stability analysis and only considering ranges for constants that make
sense biologically, we find that (0, 0) is a stable node and (1, 0) is a saddle.

• Thus the FK equation can support travelling wave solutions with admissible wave speeds
of c ≥ 2.

4.2.2 Wave speed

• The above, however, does not give information regarding for which initial conditions u(X, 0)
will cause travelling waves to emerge nor the specific values of c that waves might have.

• Kolmogorov showed that if the initial condition satisfies

u(X, 0) = u0(X) ≥ 0, u0(X) =

{
1 if X ≤ X1

0 if X ≥ X2

with X1 < X2 and u0(X) is a continuous function of X in the interval (X1, X2), then the
solution eventually evolves into the travelling wave solution with U(ξ) with c = 2.

4.3 Spatial dynamics of predator-prey system

• Instead of describing spatial dynamics of an isolated popualtion, we examine how reaction-
diffusion equations can be coupled to model interacting populations.
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• Interactions are included by considering a system of PDEs, expressed as

∂u

∂t
= f +D∇2u

where u(x, t) and f(u,x, t) are vectors and now D is the diffusion matrix which is assumed
to be diagonal, where Dii = Di the diffusion coefficient of a species i.

• Consider the system

∂N

∂t
= rN

(
1− N

K

)
− aNP +D1

∂2N

∂x2

∂P

∂t
= bNP − cP +D2

∂2P

∂x2

as previously with the predator prey system but with the addition of diffusion for the
populations to spread.

• Non-dimensionalising, we get

∂u

∂τ
= u (1− u− v) +D

∂2u

∂X2

∂v

∂τ
= αv(u− β) +

∂2v

∂X2

• We consider when D = 0 and thus have

∂u

∂τ
= u (1− u− v)

∂v

∂τ
= αv(u− β) +

∂2v

∂X2

In doing so, we set a constraint that preys are unable to move.

• First, we remove the diffusive term and simply consider the system of ODEs

du

dτ
= u (1− u− v)

dv

dτ
= αv(u− β)

• Though linear stability analysis, we find that the fixed points (0, 0) and (1, 0) are unstable,
whereas (β, 1−β) is a stable node when 4α < β/(1−β) and a stable spiral for 4α > β(1−β).

• Looking for travelling wave solutions of the form

u(X, τ) = U(ξ), v(X, τ) = V (ξ)

with ξ = X − cτ . Based on the fixed points of the ODE system, we impose

U → 1, V → 0, as ξ → ∞, U → β and V → 1− β, as ξ → −∞

• Substituting the travelling wave ansatz, we obtain

−c
dU

dξ
= U(1− U − V )

−c
dV

dξ
= αV (U − β) +

d2V

dξ2

and setting W = dV/dξ, we arrive at the three dimensional system

dU

dξ
=

U

c
(U + V − 1)

dV

dξ
= W

dW

dξ
= αV (β − U)− cW

14



• When performing linear stabiliity analysis on the constrained fixed points (1, 0, 0) and
(β, 1− β, 0), we find the characteristic equation is not easily handled. However, we can
solve for the local maxima and minima when α is zero and observe that the cubic is shifted
upwards with positive α.

• We find that α reaches a critical value αc for which one of the eigenvalues has multiplicity
two. When α > αc, we have one real and two complex unstable eigenvalues which causes
oscillatory behaviour. When α ≤ αc, the unstable eigenvalue is real and so, as ξ increases,
we move from (U, V ) = (β, 1− β) to (1, 0).

• Here, the wave speed is given by the minimum possible value

c2 = 4α(1− β)

4.4 Spatial spread of epidemics

• We extend the SIS model to consider spatial dynamics with the following set of equations

∂S

∂t
= −rSI + aI +D

∂2S

∂x2

∂I

∂t
= rSI − aI +D

∂2I

∂x2

where the susceptibles and the infectives have the same diffusion coefficient. As we assume
N = S + I is constant, we thus have

∂I

∂t
= rI(N − I)− aI +D

∂2I

∂x2

which can be rearranged to

∂I

∂t
= kI

(
1− I

K

)
+D

∂2I

∂x2

which, when writing u = I/K, yields the FK equation.

• Finding a travelling wave solution, we find that c2 < 4KD admits oscillatory solutions near
I = 0 which would lead to a negative population size. Hence we have c2 ≥ 4KD and the
wave speed is c = 2

√
KD = 2

√
(rN − a)D.

• We can interpret this as: the spatial spread of the disease can be slowed by reducing
the diffusion coefficient, by increasing the recovery rate, or by reducing the transmission
contact.

4.4.1 Spread of rabies in a fox population

• We now consider a susceptible population that does not diffuse and an infective population
that does not recover, but instead die. This describes the spread of rabies in a fox population

∂S

∂t
= −rSI

∂I

∂t
= rSI − aI +D

∂2I

∂x2

• Non-dimensionalising, we get

∂s

∂tau
= −sh

∂h

∂τ
= sh− αh+

∂2h

∂X2

• Removing the diffusive term and solving the ODE, we find that provided h = 0, the
population size does not change.
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• We assume the infective population is spatially lcoalised, i.e.

h → 0 as x → ±∞

• We thus have the boundary conditions

ds

dz
→ 0 as x → −∞, s → 1 as x → ∞

• Assuming the population are travelling waves and rearranging the terms, we arrive at the
system

dΣ

dξ
=

ΣH

c

dH

dξ
= P

dP

dξ
= −cP + αH − ΣH

• We know we have a fixed point (1, 0, 0). Examining its stability through the Jacobian, we
find the eigenvalues

λ = 0, λ =
1

2

(
−c±

√
c2 + 4(α− 1)

)
• To avoid oscillatory solutions that produce negative population sizes, the wave speed must
satisfy

c2 ≥ 4(1− α)

• This condition means (1, 0, 0) is stable, which makes sense as the solution should tend to
(1, 0, 0) as ξ → ∞.

4.5 Pattern formation

4.5.1 Turing instability

• Consider the general system of reaction diffusion equations

∂u

∂t
= f(u, v) +D1∇2u

∂v

∂t
= g(u, v) +D2∇2v

for morphogen concentrations u and v in a region of space Ω ⊂ R3. We assume no
morphogens enter Ω through ∂Ω and impose no-flux boundary conditions

n̂ · ∇u = 0 and n̂ · ∇v = 0

for x ∈ ∂Ω. We are interested in what conditions must be met for the system to emit
patterns.

• First, consider the system of ODEs

du

dt
= f(u, v)

dv

dt
= g(u, v)

◦ For patterns to emerge, this system must have a stable fixed point (u∗, v∗) and so
we must have

τ = trace(J) < 0, ∆ = det(J) > 0

• Now, we consider the stability of the homogeneous steady solutions, i.e. by adding
perturbations ϵ as in

u(x, t) = u∗ + ϵU(x, t)

v(x, t) = v∗ + ϵV (x, t)

where 0 < ϵ ≪ 1 and see if the perturbations U(x, t), V (x, t) grow or decay with time.
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◦ For an ODE system, they clearly decay as (u∗, v∗) is stable. However, this is not
necessarily the case for a PDE system.

◦ In fact, for patterns to emerge, the homogeneous solution must be unstable from
their spatial dependencies.

• Substituting back into the original equation and Taylor expanding f and g about the
perturbations for e ≪ 1, we get

∂W

∂t
= JW +D∇2W

where W = (U, V )T and D is the diagonal diffusion matrix.

• Using ansatz,
W(x, t) = ζζζF (t)ϕ(x)

where ζ is a constant vector, F (t) is a function of time, and ϕ(x) is a function of space.
Substituting and rearranging, we get

ζζζ

F

dF

dt
= Jζζζ +

Dζζζ

ϕ
∇2ϕ

• Since Jζζζ is independent of both t and x, we have the following eigen value problems

dF

dt
= λF

with solution F = eλt and

∇2ϕ+ k2ϕ = 0, x ∈ Ω

n̂ · ∇ϕ = 0, x ∈ ∂Ω

which leads to the third eigenvalue problem

(J− k2D)ζζζ = λζζζ

• Hence we find a solution
W = ζζζϕ(x)eλt

where λ(k2) satisfies
det(λI − J+ k2D) = 0

• Thus if ℜ(λ) > 0 then perturbations with spatial dependence will grow, leading to pattern
formation. Otherwise, it decays.

4.5.2 Conditions for pattern formation

• In order for ℜ(λ) > 0, the matrix M = J− k2D must either have

trace(M) = J11 + J22 − k2(D1 +D2) > 0

or, alternatively,

det(M) = (J11 − k2D1)(J22− k2D2)− J21J12 < 0

• However, J11+J22 = trace(J) < 0 as the ODE fixed point is stable, and since k2.D1, D2 >
0, then trace(M) < 0.

• Hence we need det(M) < 0 to get ℜ(λ) > 0. Solving for the critical values k2± which
make det(M) = 0, we get

k2± =
(D2J11 +D1J22)±

√
(D2J11 +D1J22)2 − 4D1D2det(J)

2D1D2
.
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• For k2± to be real and positive, we must have

D2J11 +D1J22 > 0

(D2J11 +D1J22)
2 − 4D1D2det(J) > 0

We then find that D2 > D1 is a necessity and k2+ = k2− corresponds to the bifurcation
point for when the spatially homogeneous solution becomes unstable. Hence we have the
critical value of k2

k2c =

√
det(J)

D1D2

4.6 Pattern formation in one and two-dimensions

• Consider the dimensionless reaction-diffusion system

∂u

∂t
= a− u+ u2v +∇2u

∂v

∂t
= b− u2v + d∇2u

where a, b, d are positive.

• Solving for the ODE case, we find that

J(u∗, v∗) =

[ b−a
a+b (a+ b)2

− 2b
a+b −(a+ b)2

]
.

• As we want stability of fixed points, we must have

trace(J(u∗, v∗)) = J11 + J22 < 0

det(J(u∗, v∗)) = J11J22 − J21J12 > 0

the latter of which is satisfied as det(J) = (a+ b)2, whereas the first yields the condition

b− a < (a+ b)3

• As we want ℜ(λ) > 0, we must have

D1J22 +D2J11 > 0

(D2J11 +D1J22)
2 − 4D1D2det(J) > 0

the first of which yields the conditions

d > (a+ b)3/(b− a), b > a

and the second resulting in

(d(b− a)− (a+ b)3)2 > 4d(a+ b)4

4.6.1 In one-dimension

• In the one-dimensional case, we have the system

∂u

∂t
= a− u+ u2v +

∂2u

∂x2

∂v

∂t
= b− u2v + d

∂2v

∂x2

for x ∈ Ω = (0, L). The no-flux boundary conditions are

∂u

∂x
(0) =

∂u

∂x
(L) =

∂v

∂x
(0) =

∂v

∂x
(L) = 0
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• Linearising about the homogeneous steady-state solution, we get

∂W

∂t
= JW +D∂2W

∂x2

subject to the constraints
∂W

∂x
(0) =

∂W

∂x
(L) = 0

• With the ansatz W = ζζζF (t)ϕ(x), we yield two eigen value problems

dF

dt
= λF

and

∂2ϕ

∂x2
+ k2ϕ = 0

∂ϕ

∂x
(0) =

∂ϕ

∂x
(L) = 0

• Solving for ϕ that satisfies the boundary conditions and the differential equation, we find

ϕ(x) = cos
(nπx

L

)
• And, so the most general form of the perturbation is

W(x, t) =
∑
n

anζζζne
λ(nπ/L)t cos

(nπx
L

)

• To make det(M) = 0 where M = J− k2D, we can solve a range for k that establishes
patterns.

4.6.2 In two dimensions

• Now consider the two dimensional case where we have

∂u

∂t
= a− u+ u2v +

∂2u

∂x2
+

∂2u

∂y2

∂v

∂t
= b− u2v + d

(
∂2v

∂x2
+

∂2v

∂y2

)
with a domain Ω = (0, L)× (0, H).

• The no-flux boundary conditions are

∂u

∂x
(0, y) =

∂u

∂x
(L, y) =

∂v

∂x
(0, y) =

∂v

∂x
(L, y) = 0

∂u

∂y
(x, 0) =

∂u

∂y
(x,H) =

∂v

∂y
(x, 0) =

∂v

∂y
(x,H) = 0

• The fixed points, J , and conditions for pattern formation and range of k2 are the same as
above. However, the realised vlues of k will now make use of a ϕ which is a solution to

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+ k2ϕ = 0

∂ϕ

∂x
(0, y) =

∂ϕ

∂x
(L, y) =

∂ϕ

∂x
(x, 0) =

∂ϕ

∂x
(x,H) = 0

• Using separation of variables, we find that

ϕn,m(x, y) = cos
(nπx

L

)
cos
(mπy

H

)
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where n,m are positive integers. Solving for the eigenvalue k2, as above, we find

k2n,m =
(nπ
L

)2
+
(mπ

H

)2
and so the general solution is

W(x, y, t) =
∑
n

∑
m

an,mζζζn,meλ(k
2
n,m)t cos

(nπx
L

)
cos
(mπy

H

)
.

• Stripes arise when H ≪ L whereas spots occur when H ≈ L.

5 Stochastic processes

• We attempt to introduce stochasticity into our models rather than simply consider the
deterministic cases.

5.1 Continuous-Time Markov Chains (CTMC)

• We consider a random variable X(t) that depends on time t and takes values in the natural
numbers (i.e. 0, 1, . . .).

5.1.1 Transition probabilities

• We define the transition probabilities as

pji(t− s) = P (X(t) = j | X(s) = i)

for s < t. The matrix P (t) = (pji(t)) is called the transition matrix.

• These transition probabilities satisfy the Chapman-Kolmogorov equations

pji(t+ s) =

∞∑
k=0

pjk(t)pki(s)

which in matrix form is P(t+ s) = P(t)P(s). We also have

∞∑
j=0

pji(t) = 1, t ≥ 0

• A Poisson process (Xt)t≥0 is defined by

1. At t = 0, X(0) = 0.

2. For small ∆t, the transition probabilities are given by

pi+1,i(∆t) = λ∆t+ o(∆t)

pi,i(∆t) = 1− λ∆t+ o(∆t)

pj,i(∆t) = o(∆t)

where j ≥ i+ 2. If j < i, then pj,i(∆t) = 0.

• We say f(∆t) = o(∆t) if

lim
∆t→0

f(∆t)

∆t
= 0
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5.1.2 Generator matrix

• We assume that P(0) = I. Then the entries of the generator matrix qji are defined as

qji = lim
∆t→0+

pji(∆t)− pji(0)

∆t
= lim

∆t→0+

pji(∆t)

∆t

for i ̸= j, and

qii = lim
∆t→0+

pii(∆t)− pii(0)

∆t
= lim

∆t→0+

pii(∆t)− 1

∆t

Since
∑∞

j=0 pji(∆t) = 1, then 1− pii(∆t) =
∑

j ̸=i pji(∆t) and so

qii = −
∑
j ̸=i

qji

• We have

Q = lim
∆t→0+

P (∆t)− I

∆t

and so for sufficiently small ∆t, we can say

pji(∆t) = δji + qji∆t+ o(∆t)

5.1.3 Generator matrix for the Poisson process

• The matrix is one whose entries are given by

qii = −λ, qi+1,i = λ

5.2 Kolmogorov differential equations

• First consider the Chapman-Kolmogorov equation

pji(t+∆t) =

∞∑
k=0

pjk(∆t)pki(t)

substituting the expression for small ∆t,

pji(t+∆t) =

∞∑
k=0

[δ + jk + qjk∆t+ o(∆t)]pki(t)

as row sums are one and we have a kronecker delta, we rearrange to get

pji(t+∆t)− pji(t)

∆t
=

∞∑
k=0

qjkpki(t) +
o(∆t)

∆t

and taking the limit we arrive at

dpji
dt

=

∞∑
k=0

qjkpki(t)

which in matrix form is
dP

dt
= QP

This is known as the forward Kolmogorov equation.

• In component form, we have

dpi
dt

=

∞∑
k=0

qikpk(t) =

∞∑
k=0

∞∑
i=0

qikpkz
i
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5.2.1 Forward Kolmogorov equation for the Poisson process

• By definition of the Poisson process, we have pi(t) = pi0(t) and so

dp0
dt

= −λp0

dpi
dt

= −λpi−1 − λpi, for i ≥ 1

• The initial condition X(0) = 0 yields

p0(t) = e−λt

• Substituting onto the forward equation and solving for p1(t), we have

p1(t) = λte−λt

and, in fact, we find the general rule

pi(t) =
(λt)i

i!
e−λt

• Computing the mean and variance

m(t) =

∞∑
i=0

i
(λt)i

i!
e−λt = λt

σ2(t) =
∞∑
i=0

i2
(λt)i

i!
e−λt − (λt)2 = λt

shows that pi(t) is indeed Poisson distributed with rate λt.

• Alternatively, we can solve for the generating function given by

P(z, t) =

∞∑
i=0

pi(t)z
i

• With this, we can solve for the exact values and moments

pi(t) =
1

i!

∂iP
∂zi

∣∣∣∣
z=0

m(t) =
∂P
∂z

∣∣∣∣
z=1

σ2(t) =
∂2P
∂z2

∣∣∣
z=1

+
∂P
∂z

∣∣∣
z=1

−
(
∂P
∂z

∣∣∣∣
z=1

)2
.

• We can derive a PDE for P(z, t) using the forward Kolmogorov equation

∂P
∂t

=

∞∑
i=0

dpi
dt

zi

◦ For a Poisson process, note that we have

dp0
dt

= −λp0

dpi
dt

= −λpi + λpi−1, for i > 0

◦ And so substituting onto the PDE,

∂P

∂t
= −λ

∞∑
i=0

pi(t)z
i + λ

∑
i=1

pi−1(t)z
i.

reindexing terms, we find
∂P
∂t

= λ(z − 1)P

of which with initial condition P(z, 0) = 1, we get the solution

P(z, t) = eλ(z−1)t
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5.3 Simple birth process

• We consider the simple birth process governed by the infinitesimal transition probabilities

pi+j,i(∆t) =


λi∆t+ o(∆t), j = 1

1− λi∆t+ o(∆t), j = 0

o(∆t), j ≥ 2

0, j < 0

• Here λ is the birth rate per capita.

5.3.1 Mean and variance

• We find that the non-zero entries of the generator matrix are given by

qii = −λi, qi+1,i = λi

and thus the forward Kolmogorov equation is

dpNj

dt
= −λNpNj

dpji
dt

= λ(j − 1)pj−1,i − λjpji, for i ≥ N + 1

• The probability generating function is given by

P(z, t) =
zNe−Nλt

[1− z(1− e−λt)]N

• Solving for the mean and variance, we find

m(t) = Neλt, σ2(t) = Ne2λt(1− e−λt)

5.4 Simple birth and death process

• We consider the simple birth and death process governed by the infinitesimal transition
probabilities

pi+j,i(∆t) =


λi∆t+ o(∆t), j = 1

1− (λ+ µ)i∆t+ o(∆t), j = 0

µi∆t+ o(∆t), j = −1

o(∆t), j ̸= −1, 0, 1

• Here, µ is the death rate per capita.

5.4.1 Mean and Variance

• We find that the non-zero entries of the generator matrix are

qii = −(λ+ µ)i, qi+1,i = λi, qi−1,i = µi

• The probability generating function is given by

P(z, t) =

(
e(µ−λ)t(λz − µ)− µ(z − 1)

e(µ−λ)t(λz − µ)− λ(z − 1)

)N

, λ ̸= µ.

• Solving for the mean and variance, we find

m(t) = Ne(λ−µ)t, σ2(t) = N
λ+ µ

λ− µ
e(λ−µ)t

(
e(λ−µ)t − 1

)
• We also can calculate

p0(t) =

(
µ− µe(µ−λ)t

λ− µe(µ−λ)t

)N

and see that, by letting t → ∞,

p0(∞) =

{
1, if λ ≤ µ(
µ
λ

)N
, if λ > µ
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5.4.2 Stationary probability distribution for a birth and death process

• Note that the generator matrix is given by

Q =


−λ0 µ1

λ0 −(µ1 + λ1) µ2

λ1 −(µ2 + λ2) µ3

. . .
. . .

 .

• Note that the stationary probability distribution is given by Qπ = 0 with
∑∞

i=0 πi = 1 and
πi ≥ 0. Evaluating Qπ = 0, we get

0 = −λ0π0 + µ1π1

0 = λi−1πi−1 − (λi + µi)πi + µi+1πi+1

• We can show by induction or solve recursively then that

πi =
λ0λ1 · · ·λi−1

µ1µ2 · · ·µi
π0

where we have that

π0 =

(
1 +

∞∑
i=1

λ0λ1 · · ·λi−1

µ1µ2 · · ·µi

)−1

5.5 Logistic growth process

• Consider the original logistic equation

dn

dt
= rn

(
1− n

K

)
• Treating the RHS as the difference between thebirth and death rates, i.e.

λn − µn = rn− r

K
n2

we can non-dimensionalise the rates to be

λi = b1i+ b2i
2 > 0

µi = d1i+ d2i
2 > 0

where b1, b2, d1, d2 are positive constants

• We proceed with the same calculations as before and get

dpi
dt

= −(λi + µi)pi(t) + λi−1pi−1(t) + µi+1pi+1(t).

• We can obtain the mean by multiplying above by i and summing by i to get

dm

dt
= −

∑
i

i(λi + µi)pi(t) +
∑
i

iλi−1pi−1(t) +
∑
i

iµi+1pi+1(t).

which when re-indexed, yields

dm

dt
=
∑
i

(
(b1 − d1)i− (d2 − b2)i

2
)
pi(t),

• Since σ2(t) =
∑

i i
2pi(t)−m2(t), we finally get

dm

dt
= rm

(
1− m

K

)
− r

σ2(t)

K

where r = (b1 − d1) and K = (b1 − d1)/(d2 − b2)

• The above equation models the mean as having a logistic growth but with an extra term
capturing the nonlinear dependence of the birth and death rates on the population size.
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5.6 Stochastic SIS model

• Consider the original SIS model

dS

dt
= − β

N
SI + γI

dI

dt
=

β

N
SI − γI

Using S = N − I, we have then

dI

dt
=

β

N
I(N − I)− γI

• We can ascertain from above: the birth and death rates

λi =

{
β
N i(N − i) for i = 0, 1, . . . , N

0 i > N

and
µi = γi

5.7 Quasistationary probability distribution

• As with all the models before, we observe that limt→∞ p0(t) = 1 as X = 0 is an absorbing
state.

• To avoid this effect, we remove the X = 0 state by having µ1 = 0 and so the altered
generator matrix Q̃ becomes the same as before but with the first row and column removed.

• The quasistationary probability distribution is then given by Q̃π̃ = 0 with
∑∞

i=1 π̃i = 1.
Solving yields

π̃i =
λ1λ2 · · ·λi−1

µ2µ3 · · ·µi
π̃1
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