COMP70053: Introduction to Machine Learning Notes
1 The Big Picture

Al aims to act and think both humanly and rationally.

A computer program learns from experience E in some class of tasks
T with performance measure P, if its performance (measured by P on
tasks in T) improves with experience E.

Three main settings:
1. Supervised learning
o input variables have correct output labels attached.
2. Unsupervised learning
o input variables have no labels attached.
o aim to discover hidden/latent structures within the data.
o e.g. clustering, dimensionality reduction.
3. Reinforcement Learning

o input variables have no labels attached, but the environment
returns a reward signal for each action.

o policy search: finding which action will maximise reward de-
pending on the agent’s current state.

o e.g. video game Al, robotics.

Other settings:
1. Semi-supervised learning
o some data have labels, some do not
2. Weakly-supervised learning
o inexact output labels
o e.g. there is an umbrella in the photo, find it

Two most popular ML tasks:

Classification Regression
Output discrete/categorical real-valued/continuous
Used for | classifying data under one predicting a quantity re-
or more labels lated to the data
Variants binary, multi-class, multi- | simple, multiple, multi-
label variate

Two kinds of ML algorithms

Lazy Learner Eager Learner

Constructs a general, explicit de-
scription of the target function
based on the provided training ex-
amples.

Stores the training examples and
postpones Fising beyond these
data until an explicit request is
made at test time.

The bias-variance trade-off:

Values

The supervised learning pipeline:

‘ b ‘

T
Underfit

=
Robust,go0d it

Low variance

High variance

Bias-variance trade-off

High bias Low bias

Feature encoding: convert raw feature values to machine-friendly
format (typically normalised between values: 0-1)

Curse of dimensionality: higher dimension data leads to: increased
computational complexity, data sparsity, overfitting.

2 K-Nearest Neighbours and Decision Trees

e Nearest Neighbour classifier: classify a test instance to the class

label of the nearest training instance (acc to some distance metric).

k-Nearest Neighbours (kNN) classifier

o classify based on the class label with the greatest weighted average
amongst the k nearest neighbours.

o k is usually an odd number to avoid equally weighted labels.
o k must be chosen appropriately with a validation set.
Choice of k ‘ Too High

Noise sensitivity too low
Quality of fit will underfit

‘ Too Low
too high
will overfit

o (distance weighted) assign weights w(® to each neighbour based
on proximity and choose the class with the largest weighted sum.

o simple, powerful, but slow for large datasets (curse of dimensionality)

Decision Tree Learning: a method for approximating discrete
classification functions by means of a tree-based representation.
o General algorithm:

1. Search for an ’optimal’ splitting rule on training data.

2. Split dataset according to chosen splitting rule.

3. Repeat 1 and 2 on each new split subset.

Entropy: a measure of the uncertainty of a random variable; the
average amount of information:

H(X) == 32¢ P(ax)logy (P(ar))

Information gain: the difference between the initial entropy and the
weighted average entropy of the produced subsets.

IG(D7 SU’bsets) = H(D) - ZSEsubsets A

|dataset| H(S)

Types of inputs

Ordered Categorical

Split compare value with number | split based on all possible
(e.g. X < 10) labels of a feature

Tree binary multiway

Process for each feature, sort its values | search for most _infor-
and consider split points be- | mative feature and split
tween two examples with dif- | based off that
ferent class labels

Other can split on a single feature | guaranteed to split on a
more than once single feature at most once

Dealing with overfitting:
o Early stopping (with maz tree depth or min examples per leaf)

o Pruning (with a validation set)

The pruning process:
1. Go through each node only connected to leaf nodes.

. Turn each into a leaf node (with majority class label).
. Evaluate pruned tree on validation set.

. Keep tree pruned if accuracy is higher else, revert.

Ttk W N

. Repeat until all nodes have been tested.

Random Forests: model with many decision trees voting on the
class label; each tree is trained on a random sample of the training set
and a random subset of features.

3 Machine Learning Evaluation

Hyperparameters (HP): model parameters chosen before training.

Hyperparameter tuning

o find HP values that lead to the best performance.

o split dataset into: training/validation/test (usually 60%/20%/20%)

o try different HP values on training set, choose one with best accuracy
on validation set, and perform final evaluation on test set.

General rules to follow

o Evaluate the model on a held-out (test) dataset.

o The test dataset should not be used to train nor validate the model.
o Assume labels of the test set are only provided after training.

Cross-Validation (CV)
o procedure:
1. divide the dataset into k (usually 10) equal folds; use k — 1 for
training/validation and one for testing.
2. iterate k times, each time with a different test set
3. evaluate average performance across the folds
o for parameter tuning, either:
*+ Run CV using the validation set to select the best parameters,
then choose the model with the best test set performance.
* Run CV, where, at each fold, we run an internal CV across the
k — 1 folds to find optimal HPs, then choose the model with the
best test set performance overall.

o useful when the available dataset is small in size.

Confusion matrix

‘ Class 1 Predicted
TP: True Positive
FP: False Positive

‘ Class 2 Predicted
FN: False Negative
TN: True Negative

Class 1 Actual
Class 2 Actual

Precision = P(positive | classified positive) = TPZ%
Recall = P(classified positive | positive) = TPZ;—%

one might be preferred over another depending on the application:

o high recall, low precision: most of the positives are recognized, but
there are many false positives.

o low recall, high precision: miss most positives, but those classified
are truly positive.

_ 2 _ 1+42
Fy = T T Fg = 32 il
precision | recall precision trecall
note: precision, recall, and F1 are computed for each class separately.

class-wide performance can be measured through:

o Macro-averaging: take average on the class level, i.e. find the
average of each class’ metrics.

o Micro-averaging: take average on item level, i.e. sum up TP, FP,
TN, FN from all classes, and calculate metrics altogether.

If test set is imbalanced, either: downsample the majority class
(choose a subset) or upsample the minority class (add duplicates).

accuracy is misleadingly swayed by the majority class; macro-averaged
recall knows nothing about FPs; F1 is affected by class imbalance.

errg-(l—errg)

Confidence interval for error: errs & zo =t

o |50 |e6s |80 [90 |95 |98 | 99

Zo | 0.67 | 1.00 | 1.28 [1.64 | 1.96 | 2.33 | 2.58
P-hacking: misuse of data analysis to find statistically significant

patterns when in truth no underlying effect exists.

4 Neural Networks I

e Linear regression

o finding the linear trend-line (and its corresponding parameters) that
best describe data points across the feature space, e.g. § = ax + b.

o loss function: B = 1SN, (5 —y®)2

o Gradient descent: repeatedly update parameters a and b by
taking small steps in the negative direction of the partial derivative.

N ot .)
a=a-— a%—E =a—aX N, @D — y®)z®
b::b—a —b—aZN (G — y()

o as it is analytically solvable, no iterated solutions are necessary:
0 = (XTX)"'XTy for X = [z | 1.0], y = [yP], 6 = [a,b]T;
though not great for large problems (matrix inversion is O(n?3)).

Artificial neuron

o inspired by biological neurons which receive and release signals.

o given inputs z = [z;], weights W = [;], and activation function g,
it returns an output of § = g(WTx).

o can be extended to a multilayer perceptron (MLP) where neu-
rons are connected in sequence to learn higher-order features.

Perceptron

o an early version of an artificial neuron used for supervised binary
classification, particularly for linearly separable functions.

o uses threshold function as an activation: h(z) = (1) gt}‘{[é:vsﬁsi 0
with learning rule: 0; < 0; + a(y — h(z))z;

Activation functions

| Linear | ReLU | Sigmoid | Tanh
. 0 <0 1
g(x) T e ifw 3 0 TFe— tanh(x)
' (@) 1 9 #2250 9(@)(1 — g(2)) 1 g(x)?
bounds (—o0, 0) [0, o0) [0,1] [—1,1]

Neural Networks I1

Loss function

o useful for gradient descent if differentiable: 8!1' = 6! — .- 0E/80!.
o mean squared error for regression: MSE = + SN @ — i)

o categorical cross-entropy for (multi-class) classification:

L=—+YN ¢, v 10g(98"), where C' = set of classes and
g)g R predlcted probability of class ¢ for datapoint .
Backpropagation

o an iterative calculation for partial derivatives (gradients) used to
update (and thus optimise) the weights of a neural network.

o the gradient for a node’s weight can be expressed by gradients of
those that come after it; these are iteratively fed to nodes backwards.

o given 85?8 , we can update weights and biases with:
OLoss _ OLoss BZ XT OLoss
ow T~ oz N
Shoss _ oLoss 0% — 1T 8Loss
o6 — 9z @b — L "oz
and pass 653’(85 = ag‘;s . 872 to the lower layer.
o given ag(xg we can find aL%” with:
OLoss OLoss ./
0Loss _ 0Loss ¢ o/ (Z) = a1 I "(z1,1) Da1 I (21,2)
92 A %ﬁ;}slsg (22.1) ?32;”;9 (22.2)

e Gradient descent

o initialise weights randomly, compute gradient based on whole data
set, and update weights; data sets are often too big for this.

6

o (stochastic) loop over each data point: compute gradient based on
a data point and update weights; often noisy for single data point.

o (mini-batched) loop over batches of data points: compute gradient
based on a batch and update weights; widely used in practice.

Ways to optimise neural networks.

o tune, add a decay, or use an adaptive learning rate

o initialise weights differently (zeros, normal, xavier glorot/uniform)

o normalise data (to make weight updates proportional to the input)

= 0+ G Xmin)e=a)

*+ min-max normalisation: X' =
Xmaz—X

* standardisation: X' = %
Finding the best fit

o increase/reduce the network’s capacity - the number of neurons,
layers, or parameters - if the network is underfitting/overfitting.

o use a validation set to stop training early.

o (regularisation) add constraints to prevent model from overfitting.

o (dropout) randomly set neural activations to zero during training

Unsupervised Learning

Clustering: grouping instances (in some feature space) such that
those in the same group are more similar than those in other groups.

K-Means
1. initialisation: randomly select K training examples as centroids

2. assignment: assign each training example to the nearest centroid,
ie. for each i € {1,...,N}

e =mingeqy, gy [l 7H0]2

LKY
3. update: update position of each centroid to mean position of
examples assigned to it, i.e. for each k € 1,...,
S 1D =k)-2®

HEk = va=1 I1(cD=k)

4. convergence check: stop if the position of centroids barely
(t—1

changed, i.e. if Vkmé —)| < ¢, else go to step two.

An appropriate choice for K

o elbow method: run K-means with different K's; keep track of loss
for each K; select K where rate of decrease sharply shifts.

o CV method: choose K with the best average CV performance.

K-means is simple, popular, and efficient: O(iters - clusters - examples).

However, a poor choice of K leads to local optimums sensitive to initial
centroid positions, and it requires a distance function, is sensitive to
outliers, and is not suitable for non-hyper-ellipsoid clusters.
Probability density estimation

o estimates the true PDF by which the data is distributed.

o non-parametric methods (no assumptions about form) include
histograms and kernel density estimators.

o parametric methods (makes simplified assumptions about form).
Gaussian distribution
o assume data is normally distributed and find MLEs /& and &2.
o univariate
a2
* N(z|p,o 2) = m - €Xp (7('12;;))-
~ 1 N : N
* p= ﬁzizlx >7 62 = NZZ‘:1(~T(Z) _N)Z'

o multivariate

* N(x|p,X) =

exp (— 3 (x —) TS~ (x — 1)),

17 .
V(emPIT|

WEE SOIFCESERS y N ORI
Gaussian mixture models (GMM)
o a weighted mixture of Gaussians; a ”soft K-means clustering”.
o optimised using Expectation-Maximisation (EM):

1. initialisation: randomly initialise parameters

TN <D |y, B)

ZJKWJ-N(X('U [1j,55)"
3. M-step: update mean fi = (vazl Tik) "L Zf;l ripx(®.
4. convergence check: check for changes or likelihood stagnation.

2. E-step: compute responsibilities r;;, =

7 Evolutionary Algorithms

Evolutionary algorithms (EA)
o an optimisation algorithm for black-boz functions (no gradient).
1. maintain a (randomly generated) population of solutions.
2. evaluate their phenotypes with a fitness function.
3. rank and select the fittest to start a new population.
o stop when: a specific fitness value reached, a pre-defined number of
generations reached, or the best fitness in the population stagnates.

governed by three main operators:

o selection
* choose individuals to be parents in the next generation.

* (biased roulette wheel) individuals have some probability p;
of being chosen from the population.

* (tournament) two individuals are randomly selected, and the
better of the two is chosen; repeat until there are enough parents.

* (elitism) keep a fraction (10%) of the best individuals for the new
generation; guarantees fitness does not decrease per generation.

o cross-over
x combine the genotypes of the parents.

* (single-point) a split point is randomly picked, and the offspring
is formed by exchanging portions of the genotype.

o mutation . .
* apply variations to solutions; explore nearby solutions.

* (standard on binary strings) each bit is flipped with some prob-
ability m, often fixed to 1/|genotype|.

(p+XA) - ES

1. randomly generate a population of (¢ + A) individuals.

2. (evaluate and) select the best p individuals as parents (z).

3. generate X offsprings y; = z; + N(0, o), with j = randi(p).

4. new population becomes the union of parents and offspring; go to (2).

(u+) o: too large: population moves quickly to solution but hard to
refine; too small: population moves slowly and prone to local optima.

Novelty search (INS)

o optimise novelty rather than the quality of a solution; replace fitness
evaluation with a search through the novelty archive.

o behavioural descriptor (BD) characterises aspects of solutions.

Quality diversity (QD)

o aim to find collection of diverse and performant solutions, using
both a behavoural descriptor and a fitness function.

o general framework: stochastic selection, random mutation, evalua-
tion, tentative addition to collection (either in grid or unstructured).

o NS with local competition: archive those outperforming £ANN.

MAP-elites
o discretise BD space in a grid and fill with best solutions.

o solutions go to cells corresponding to their BD; if the cell is empty,
it is added; if the cell is occupied, keep one with the best fitness.

o diversity quantified with archive size, performance with
max/mean fitness; convergence speed is also of importantance.

o QD-score: sum of the fitness of all solutions in the archive.

