
COMP70053: Introduction to Machine Learning Notes

1 The Big Picture

• AI aims to act and think both humanly and rationally.

• A computer program learns from experience E in some class of tasks
T with performance measure P, if its performance (measured by P on
tasks in T) improves with experience E.

• Three main settings:

1. Supervised learning
◦ input variables have correct output labels attached.

2. Unsupervised learning
◦ input variables have no labels attached.

◦ aim to discover hidden/latent structures within the data.

◦ e.g. clustering, dimensionality reduction.

3. Reinforcement Learning
◦ input variables have no labels attached, but the environment

returns a reward signal for each action.

◦ policy search: finding which action will maximise reward de-
pending on the agent’s current state.

◦ e.g. video game AI, robotics.

• Other settings:

1. Semi-supervised learning
◦ some data have labels, some do not

2. Weakly-supervised learning
◦ inexact output labels

◦ e.g. there is an umbrella in the photo, find it

• Two most popular ML tasks:

Classification Regression

Output discrete/categorical real-valued/continuous

Used for classifying data under one
or more labels

predicting a quantity re-
lated to the data

Variants binary, multi-class, multi-
label

simple, multiple, multi-
variate

• Two kinds of ML algorithms

Lazy Learner Eager Learner

Stores the training examples and
postpones Fising beyond these
data until an explicit request is
made at test time.

Constructs a general, explicit de-
scription of the target function
based on the provided training ex-
amples.

•

The supervised learning pipeline: The bias-variance trade-off:

• Feature encoding: convert raw feature values to machine-friendly
format (typically normalised between values: 0-1)

• Curse of dimensionality: higher dimension data leads to: increased
computational complexity, data sparsity, overfitting.

2 K-Nearest Neighbours and Decision Trees

• Nearest Neighbour classifier: classify a test instance to the class
label of the nearest training instance (acc to some distance metric).

• k-Nearest Neighbours (kNN) classifier

◦ classify based on the class label with the greatest weighted average
amongst the k nearest neighbours.

◦ k is usually an odd number to avoid equally weighted labels.

◦ k must be chosen appropriately with a validation set.

Choice of k Too Low Too High

Noise sensitivity too high too low

Quality of fit will overfit will underfit

◦ (distance weighted) assign weights w(i) to each neighbour based
on proximity and choose the class with the largest weighted sum.

◦ simple, powerful, but slow for large datasets (curse of dimensionality)

• Decision Tree Learning: a method for approximating discrete
classification functions by means of a tree-based representation.

◦ General algorithm:
1. Search for an ’optimal’ splitting rule on training data.

2. Split dataset according to chosen splitting rule.

3. Repeat 1 and 2 on each new split subset.

• Entropy: a measure of the uncertainty of a random variable; the
average amount of information:

H(X) = −
∑K

k P (xk) log2 (P (xk))

• Information gain: the difference between the initial entropy and the
weighted average entropy of the produced subsets.

IG(D, subsets) = H(D)−
∑

S∈subsets
|S|

|dataset|H(S)

• Types of inputs

Ordered Categorical

Split compare value with number
(e.g. X < 10)

split based on all possible
labels of a feature

Tree binary multiway

Process for each feature, sort its values
and consider split points be-
tween two examples with dif-
ferent class labels

search for most infor-
mative feature and split
based off that

Other can split on a single feature
more than once

guaranteed to split on a
single feature at most once

• Dealing with overfitting:

◦ Early stopping (with max tree depth or min examples per leaf)

◦ Pruning (with a validation set)

• The pruning process:

1. Go through each node only connected to leaf nodes.

2. Turn each into a leaf node (with majority class label).

3. Evaluate pruned tree on validation set.

4. Keep tree pruned if accuracy is higher else, revert.

5. Repeat until all nodes have been tested.

• Random Forests: model with many decision trees voting on the
class label; each tree is trained on a random sample of the training set
and a random subset of features.

3 Machine Learning Evaluation

• Hyperparameters (HP): model parameters chosen before training.

• Hyperparameter tuning

◦ find HP values that lead to the best performance.

◦ split dataset into: training/validation/test (usually 60%/20%/20%)

◦ try different HP values on training set, choose one with best accuracy
on validation set, and perform final evaluation on test set.

• General rules to follow
◦ Evaluate the model on a held-out (test) dataset.

◦ The test dataset should not be used to train nor validate the model.
◦ Assume labels of the test set are only provided after training.

• Cross-Validation (CV)

◦ procedure:
1. divide the dataset into k (usually 10) equal folds; use k − 1 for

training/validation and one for testing.
2. iterate k times, each time with a different test set
3. evaluate average performance across the folds

◦ for parameter tuning, either:
∗ Run CV using the validation set to select the best parameters,

then choose the model with the best test set performance.
∗ Run CV, where, at each fold, we run an internal CV across the

k − 1 folds to find optimal HPs, then choose the model with the
best test set performance overall.

◦ useful when the available dataset is small in size.

• Confusion matrix

Class 1 Predicted Class 2 Predicted

Class 1 Actual TP: True Positive FN: False Negative

Class 2 Actual FP: False Positive TN: True Negative

• Precision = P (positive | classified positive) = TP
TP+FP

• Recall = P (classified positive | positive) = TP
TP+FN

• one might be preferred over another depending on the application:

◦ high recall, low precision: most of the positives are recognized, but
there are many false positives.

◦ low recall, high precision: miss most positives, but those classified
are truly positive.

• F1 = 2
1

precision
+ 1

recall

, Fβ = 1+β2

β2

precision
+ 1

recall

• note: precision, recall, and F1 are computed for each class separately.

• class-wide performance can be measured through:

◦ Macro-averaging: take average on the class level, i.e. find the
average of each class’ metrics.

◦ Micro-averaging: take average on item level, i.e. sum up TP, FP,
TN, FN from all classes, and calculate metrics altogether.

• If test set is imbalanced, either: downsample the majority class
(choose a subset) or upsample the minority class (add duplicates).

• accuracy is misleadingly swayed by the majority class; macro-averaged
recall knows nothing about FPs; F1 is affected by class imbalance.

• Confidence interval for error: errs ± zα

√
errs·(1−errs)

n
.

α 50 68 80 90 95 98 99

zα 0.67 1.00 1.28 1.64 1.96 2.33 2.58

• P-hacking: misuse of data analysis to find statistically significant
patterns when in truth no underlying effect exists.

1

4 Neural Networks I
• Linear regression

◦ finding the linear trend-line (and its corresponding parameters) that
best describe data points across the feature space, e.g. ŷ = ax+ b.

◦ loss function: E = 1
2

∑N
i=1 (ŷ

(i) − y(i))2

◦ Gradient descent: repeatedly update parameters a and b by
taking small steps in the negative direction of the partial derivative.

a := a− α ∂E
∂a

= a− α
∑N

i=1(ŷ
(i) − y(i))x(i)

b := b− α ∂E
∂b

= b− α
∑N

i=1(ŷ
(i) − y(i))

◦ as it is analytically solvable, no iterated solutions are necessary:
θ∗ = (XTX)−1XT y for X = [x(i) | 1.0], y = [y(i)], θ = [a, b]T ;
though not great for large problems (matrix inversion is O(n3)).

• Artificial neuron
◦ inspired by biological neurons which receive and release signals.

◦ given inputs x = [xi], weights W = [θi], and activation function g,
it returns an output of ŷ = g(WT x).

◦ can be extended to a multilayer perceptron (MLP) where neu-
rons are connected in sequence to learn higher-order features.

• Perceptron

◦ an early version of an artificial neuron used for supervised binary
classification, particularly for linearly separable functions.

◦ uses threshold function as an activation: h(x) =
{
1 if WTx > 0
0 otherwise

with learning rule: θi ← θi + α(y − h(x))xi.

• Activation functions
Linear ReLU Sigmoid Tanh

g(x) x
{
0 if x ≤ 0
x if x > 0

1
1+e−x tanh(x)

g′(x) 1
{
0 if x ≤ 0
1 if x > 0

g(x)(1 − g(x)) 1 − g(x)2

bounds (−∞,∞) [0,∞) [0, 1] [−1, 1]

5 Neural Networks II
• Loss function

◦ useful for gradient descent if differentiable: θt+1
i = θt

i − α · ∂E/∂θt
i .

◦ mean squared error for regression: MSE = 1
N

∑N
i=1(ŷi − yi)

2.

◦ categorical cross-entropy for (multi-class) classification:

L = − 1
N

∑N
i=1

∑C
c=1 y

(i)
c log(ŷ

(i)
c), where C := set of classes and

ŷ
(i)
c := predicted probability of class c for datapoint i.

• Backpropagation

◦ an iterative calculation for partial derivatives (gradients) used to
update (and thus optimise) the weights of a neural network.

◦ the gradient for a node’s weight can be expressed by gradients of
those that come after it; these are iteratively fed to nodes backwards.

◦ given ∂Loss
∂Z

, we can update weights and biases with:
∂Loss
∂W = ∂Loss

∂Z · ∂Z
∂W = XT ∂Loss

∂Z
∂Loss

∂b = ∂Loss
∂Z · ∂Z

∂b = 1T ∂Loss
∂Z

and pass ∂Loss
∂X

= ∂Loss
∂Z

· ∂Z
∂X

to the lower layer.

◦ given ∂Loss
∂A

, we can find ∂Loss
∂Z

with:

∂Loss
∂Z = ∂Loss

∂A ◦ g′(Z) =

[∂Loss
∂a1,1

g′(z1,1)
∂Loss
∂a1,2

g′(z1,2)
∂Loss
∂a2,1

g′(z2,1)
∂Loss
∂a2,2

g′(z2,2)

]

• Gradient descent
◦ initialise weights randomly, compute gradient based on whole data

set, and update weights; data sets are often too big for this.

◦ (stochastic) loop over each data point : compute gradient based on
a data point and update weights; often noisy for single data point.

◦ (mini-batched) loop over batches of data points: compute gradient
based on a batch and update weights; widely used in practice.

• Ways to optimise neural networks.

◦ tune, add a decay, or use an adaptive learning rate

◦ initialise weights differently (zeros, normal, xavier glorot/uniform)

◦ normalise data (to make weight updates proportional to the input)

∗ min-max normalisation: X′ = a +
(X−Xmin)(b−a)

Xmax−Xmin

∗ standardisation: X′ = X−µ
σ

• Finding the best fit

◦ increase/reduce the network’s capacity - the number of neurons,
layers, or parameters - if the network is underfitting/overfitting.

◦ use a validation set to stop training early.

◦ (regularisation) add constraints to prevent model from overfitting.

◦ (dropout) randomly set neural activations to zero during training

6 Unsupervised Learning

• Clustering: grouping instances (in some feature space) such that
those in the same group are more similar than those in other groups.

• K-Means
1. initialisation: randomly select K training examples as centroids

2. assignment: assign each training example to the nearest centroid,
i.e. for each i ∈ {1, . . . , N}

c(i) = mink∈{1,...,K} ∥x(I)−µk∥2

3. update: update position of each centroid to mean position of
examples assigned to it, i.e. for each k ∈ 1, . . . ,K

µk =
∑N

i=1 I(c(i)=k)·x(i)∑N
i=1 I(c(i)=k)

4. convergence check: stop if the position of centroids barely

changed, i.e. if ∀k|µ(t)
k − µ

(t−1)
k | < ϵ, else go to step two.

• An appropriate choice for K

◦ elbow method: run K-means with different Ks; keep track of loss
for each K; select K where rate of decrease sharply shifts.

◦ CV method: choose K with the best average CV performance.

• K-means is simple, popular, and efficient: O(iters · clusters · examples).
However, a poor choice of K leads to local optimums sensitive to initial
centroid positions, and it requires a distance function, is sensitive to
outliers, and is not suitable for non-hyper-ellipsoid clusters.

• Probability density estimation

◦ estimates the true PDF by which the data is distributed.

◦ non-parametric methods (no assumptions about form) include
histograms and kernel density estimators.

◦ parametric methods (makes simplified assumptions about form).

• Gaussian distribution

◦ assume data is normally distributed and find MLEs µ̂ and σ̂2.

◦ univariate

∗ N (x | µ, σ2) = 1√
2πσ2

· exp (− (x−µ)2

2σ2).

∗ µ̂ = 1
N

∑N
i=1 x

(i), σ̂2 = 1
N

∑N
i=1(x

(i) − µ̂)2.

◦ multivariate
∗ N (x | µ,Σ) = 1√

(2π)D|Σ|
· exp (− 1

2
(x− µ)TΣ−1(x− µ)).

∗ µ̂ = 1
N

∑N
i=1 x

(i), Σ̂ = 1
N

∑N
i=1(x

(i) − µ̂)(x(i) − µ̂)T .

• Gaussian mixture models (GMM)

◦ a weighted mixture of Gaussians; a ”soft K-means clustering”.
◦ optimised using Expectation-Maximisation (EM):

1. initialisation: randomly initialise parameters

2. E-step: compute responsibilities rik =
πkN (x(i)|µk,Σk)

ΣK
j πjN (x(i)|µj ,Σj)

.

3. M-step: update mean µ̂k = (
∑N

i=1 rik)
−1

∑N
i=1 rikx

(i).
4. convergence check: check for changes or likelihood stagnation.

7 Evolutionary Algorithms

• Evolutionary algorithms (EA)

◦ an optimisation algorithm for black-box functions (no gradient).
1. maintain a (randomly generated) population of solutions.
2. evaluate their phenotypes with a fitness function.
3. rank and select the fittest to start a new population.

◦ stop when: a specific fitness value reached, a pre-defined number of
generations reached, or the best fitness in the population stagnates.

• governed by three main operators:
◦ selection

∗ choose individuals to be parents in the next generation.
∗ (biased roulette wheel) individuals have some probability pi

of being chosen from the population.
∗ (tournament) two individuals are randomly selected, and the

better of the two is chosen; repeat until there are enough parents.
∗ (elitism) keep a fraction (10%) of the best individuals for the new

generation; guarantees fitness does not decrease per generation.
◦ cross-over

∗ combine the genotypes of the parents.
∗ (single-point) a split point is randomly picked, and the offspring

is formed by exchanging portions of the genotype.
◦ mutation

∗ apply variations to solutions; explore nearby solutions.
∗ (standard on binary strings) each bit is flipped with some prob-

ability m, often fixed to 1/|genotype|.

• (µ+ λ) - ES
1. randomly generate a population of (µ + λ) individuals.

2. (evaluate and) select the best µ individuals as parents (x).

3. generate λ offsprings yi = xj + N (0, σ), with j = randi(µ).

4. new population becomes the union of parents and offspring; go to (2).

• (µ+ λ) σ: too large: population moves quickly to solution but hard to
refine; too small: population moves slowly and prone to local optima.

• Novelty search (NS)

◦ optimise novelty rather than the quality of a solution; replace fitness
evaluation with a search through the novelty archive.

◦ behavioural descriptor (BD) characterises aspects of solutions.

• Quality diversity (QD)

◦ aim to find collection of diverse and performant solutions, using
both a behavoural descriptor and a fitness function.

◦ general framework: stochastic selection, random mutation, evalua-
tion, tentative addition to collection (either in grid or unstructured).

◦ NS with local competition: archive those outperforming kNN.

• MAP-elites
◦ discretise BD space in a grid and fill with best solutions.
◦ solutions go to cells corresponding to their BD; if the cell is empty,

it is added; if the cell is occupied, keep one with the best fitness.
◦ diversity quantified with archive size, performance with

max/mean fitness; convergence speed is also of importantance.
◦ QD-score: sum of the fitness of all solutions in the archive.

2

