COMP60013: Logic-Based Learning Notes

2 Logic and Logical Inference

- Clausal Representation Definitions
 - Literal: atomic formula or its negation.
 - * It is ground if it contains no variables.
 - * l' is an **instance** of l, if, for some substitution θ , $l' = l\theta$.
 - Clause: disjunction of one or more literals. * Horn clauses: at most one positive literal.
 - $\cdot \{h\} \leftarrow b_1, \ldots, b_n$
 - · Definite clauses: exactly one positive literal.
 - · Denials: no positive literal.
 - * Horn clauses can be extended by permitting atoms in the body of rules to be prefixed with *not*.
 - $\cdot \{h\} \leftarrow b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m$
 - · Normal clauses: exactly one positive literal.
 - · Normal denials: no positive literal.
 - The not operator can only be used on *ground* instances.
- Theory: a conjunction of clauses (denoted as a set of clauses).

• Semantic Definitions (w.r.t. *KB*)

- Herbrand Domain (HD): the set of all ground terms formed using only constants and function symbols that appear in KB.
- Herbrand Base (HB): the set of all ground atoms formed using predicate symbols in KB and ground terms in the HD.
- Herbrand Interpretation (HI): (any subset of HB) a set of ground atoms formed using constant, function, predicate symbols occuring in KB.
- Herbrand Model (HM): a HI that satisfies all clauses in KB. * It is a **Minimal HM** iff none of its subsets is a HM of KB.
- * If KB is a satisfiable set of Horn clauses then there is a unique Minimal HM called the least HM (LHM).
- * The LHM captures the semantics of KB.
- **Grounding**: set of all ground instances $c\theta$, for $c \in KB$ and unifier θ replacing variables with terms in the HD.
- * Clausal theory KB is satisfiable iff ground(KB) is satisfiable.
- * Note: if fact $a \in ground(KB)$, then all HMs of KB must contain a.

• Skolemisation:

- $\circ \exists X \ p(X) \mapsto p(c)$, for some new constant c.
- $\circ \forall X \exists Y \ p(X,Y) \mapsto \forall X \ p(X,f(X)), \text{ for some } new \text{ function } f.$

• **Resolution** Procedure

- Given two clauses $\phi_1 \vee C_1$ and $\neg \phi_2 \vee C_2$,
- * rename variables so they appear distinct in clauses ϕ_1 and $\neg \phi_2$.
- * for any substitution θ with $\phi_1 \theta = \phi_2 \theta$, infer $(C_1 \vee C_2)\theta$.
- It is refutation complete $(KB \vdash G \text{ iff } KB \cup \neg G \vdash [])$.
- Prolog uses SLD resolution
- * It assumes working with a set of definite clauses and a denial.
- * At each step, a new denial is resolved from a denial and a def. clause.
- * By convention, the *left-most* denial atom, also called the *subgoal*, is chosen for resolution. (no shortcuts - do it sequentially!)
- * By definition, a derivation fails if the last element in the derivation is not an [] and cannot be resolved any further.
- An extension to SLD for handling normal clauses is **SLDNF**.
- * At any point, when the left-most term is prefixed with not: 1. Begin a new derivation for the negation of the term.
- 2. The result (success/failure) is then the opposite of the result inside.
- * To show failure, one should show all branches fail.
- * To start a derivation of the negation, the literal must be *ground*!

• Abduction

- An **abductive task** is given by $\langle KB, Ab, IC \rangle$, where
- * KB (Knowledge Bsse): set of normal clauses
- * Ab (Abducibles): set of ground undefined literals
- * IC (Constraints): set of normal denials
- Given an abductive task and an observation O, an **abductive solution** of O is a set Δ of ground literals such that

(i) $\Delta \subseteq Ab$, (ii) $KB \cup \Delta \vDash O$, (iii) $KB \cup \Delta \nvDash \bot$, (iv) $KB \cup \Delta \vdash IC$

- > An abductive proof involves two phases being called alternately: 1. Abductive phase
 - a. Set goal to be O and $\Delta = \{\}$.
 - b. Use SLDNF to prove the goal by refutation.
 - c. At each step, if the subgoal is:
 - * not an abducible, continue SLDNF
 - * assumed abducible, resolve subgoal, continue SLDNF. * abducible not yet assumed (neither its negation), begin
 - By convention, r = 1 for modeh declarations. consistency phase with its negation. $\cdot r = *$ indicates it can be used as many times as possible.

4 Combining Bottom-Up and Top-Down Search

the rule's head (modeh(r, s)) or body (modeb(r, s)).

• Language bias: a set of mode declarations that defines the language of

• Mode declarations indicate the predicate that may appear in either

* s (scheme) is a ground atom with placemarkers in the predicate.

· Note: a variable can be an input variable if it is an output variable

the hypothesis being searched (and thus restricts the search space).

* r (recall) indicates how many times a predicate may appear.

· Placemarkers: +t (input), -t (output), #t (constant)

in a predicate before it, e.g. $A(X) \leftarrow B(X, Y), C(Y)$.

• Inverse Entailment property: $B \cup \{h\} \vDash e^+$ iff $B \cup \{\neg e^+\} \vDash \neg h$.

• For a ground atom $e \in E^+$, theory B, and definite clause h,

b. Negate the result to get the bottom set $Bot(B, e^+)$.

ing its constants with unique variables.

• BG with SLD (PROGOL) can only solve OPL tasks.

does not appear in any of the rule heads.

heads are the same as observed examples.

1. Pick a (seed) positive example e^+ .

head of the hypothesis.

• The **bottom set** of B and e is: $Bot(B, e) = \{lq \mid B \cup \{\neg e\} \vDash \neg lq\}$.

a. Compute the negated bottomset: $B \cup \{\neg e^+ \delta\} \models \neg Bot(B, e^+)$.

• Either through SLD resolution or finding $LHM(B \cup \{\neg e^+\delta\})$.

c. Find its immediate generalisation, the bottom clause h_{\perp} , by replac-

a. Find the most general h with $h \succeq_{\theta} h_{\perp}$ that does not entail any

negative examples through a top-down refinement process.

• Observation Predicate Learning (OPL): learning predicates whose

* This is because we may need to derive $\neg P(x)$ for some P, but this

* PROGOL5 solves this by including each rule's contrapositives in B.

* This STARTSET is **incomplete** when a ground head atom needs to

be used more than once in SLD derivation. This can be shown by

4. Add h to B; remove covered e within E^+ . Go to (1) if $E^+ \neq \emptyset$.

deriving a failure with the negated head atom as a goal.

• The negation of the (skolemised) head of e^+ .

a. Augment B with contrapositives of its rules and adding to it:

• The skolemised body literals of e^+ if e^+ is a definite clause.

b. For each modeh(r, s(.)) in the language bias M, start an SLD

a. With a as the head atom, derive body atoms b_i that unify with θ

a. Find most compressed (least number of literals) hypothesis $h \in S_M$

and satisfy modeb declarations through SLD on $B \cup \{\neg e^+\}$.

b. The ground bottom clause is: $ground(h_{\perp}) = a \leftarrow b_1 \theta, ..., b_n \theta$.

c. Find its immediate generalisation, $h_{\perp} = s \leftarrow b_1, ..., b_n$

5. Add h to B; remove covered e within E^+ . Go to (1) if $E^+ \neq \emptyset$.

with $h \succeq_{\theta} h_{\perp}$ without entailing any $e^- \in E^-$.

• If successful, this step returns an atom $a = s\theta$. Set a to be the

derivation of its predicate's negated form (i.e. $\leftarrow non_{-s}(.)$)

• We say h is derivable by BG from B and e iff $h \succeq_{\theta} Bot(B, e)$,

• Equivalently useful: iff $B \cup \{\neg e^+\} \cup a \models []$.

Bottom Generalisation (BG)

▶ **PROGOL** Procedure

3. (SEARCH)

▶ **PROGOL5** Procedure

2. (STARTSET)

3. (BOTTOMSET)

4. (SEARCH)

2. (BOTTOMSET)

i.e. $H\theta \subset Bot(B, e)$ for some θ .

1. Pick a (seed) positive example e^+ .

d. Succeed when no further subgoals are left unproven.

2. Consistency phase

- a. Add new assumption to current list Δ_i .
- b. Succeed when failure (black square) is derived.
- c. At each step, if the subgoal is:
 - * not abducible, continue SLDNF.
 - * assumed abducible, resolve subgoal, continue SLDNF.
 - * negation of assumed abducible, fail entire denial. * abducible not yet assumed, start abductive phase with its negation (but don't add anything to Δ_i).

3 Inductive Logic Programming

- An inductive logic programming (ILP) task is a search problem involving minimising a loss function (the more general than relation).
- Given observations $\langle E^+, E^- \rangle$, a background knowledge B, and a covers relation c, a **predictive ILP task** aims to find a hypothesis h with:
- $\circ c(B, h, e), \forall e \in E^+ \text{ (completeness)}, \neg c(B, h, e) \forall e \in E^- \text{ (consistency)}$
- We define c(B, h, e) as $B \cup h \vDash e$ (learning from entailment).
- We call such an h an **inductive solution**.

• Concept Learning with a Version Space

- Learn definitions of concepts from positive and negative instances.
- It induces a **version space** the set of all hypotheses that are *consistent* with the given positive examples.
- The top-most concept is the most general. Concepts become more specific down the lattice, eventually reaching the positive examples.
- Aim to find hypothesis general enough to cover positive examples but specific enough not to cover negative examples.

• Generality

- We say h is more general than $h'(h \succeq h')$ iff $c(h', E) \subseteq c(h, E)$.
 - * i.e. h covers all examples covered by h'.
 - * In learning by entailment, $C \succeq D$ iff $C \vDash D$.
 - We say $C \theta$ -subsumes D iff $\exists \theta$ with $C\theta \subseteq D$.
 - · If $C \theta$ -subsumes D, then $C \vDash D$ (but not converse!)
- · Unlike \vDash , subsumption is decidable and thus a pruning strategy.
- If $c(h, \{e^-\})$, then, for any $a \succeq h$, we have $c(a, \{e^-\})$.
- * Here, an ILP search needs to **specialise** (prune parents)
- If $\neg c(h, \{e^+\})$, then, for any $s \preccurlyeq h$, we have $\neg c(s, \{e^+\})$. * Here, an ILP search needs to generalise (prune children).
- The lattice of clauses can be modified so that each node represents an equivalence class between clauses that θ -subsume each other.

• ILP Learning Strategies

- Below, we make use of operators based on θ -subsumption.
- General to specific traversal (Top-down)
 - * Use a refinement or specialisation operator ρ .
 - Add a literal in the body of the clause.
 - · Apply a substitution θ .

(clauses) $lgg(C_1, C_2)$

- * Start from most general clause and keep refining until no e^- is covered.
- Specific to general traversal (Bottom-up)
- * Plotkin's least general generalisation (lgg) operator: derive the most specific clause that generalises two given clauses.

 $= \{ lgg(l_1, l_2) \mid l_1 \in C_1, l_2 \in C_2 \land lgg(l_1, l_2) \text{ defined} \}$

lgg until most general clause not covering negative examples is found.

* Start from most specific clauses (positive examples) and keep finding

- (terms) lgg(a,b) = X, lgg(f(X),g(Z)) = W
- lgg(f(a, b), f(c, c)) = f(X, Y)(literals) $lgg(p(s_1, ..., s_n), p(t_1, ..., t_n)) = p(lgg(s_1, t_1), ..., lgg(s_n, t_n))$

Kernel Set Subsumption (KSS)

- \circ For a ground atom e, set of definite clauses B, and a set of ground definite clauses $ground(K) = k_1, ..., k_n$ with $k_i = a_i \leftarrow b_{i1}, ..., b_{im}$, * ground(K) is a ground Kernel Set of B and e
 - iff $B \cup \{a_i \land ... \land a_n\} \vDash e$ and $B \cup \{\neg e\} \vDash b_{ij}$ for all pairs i, j.
 - * The **Kernel Set** K of B and e is the immediate generalisation of ground(K) compatible with the mode declarations.
 - * A set of definite clauses H is **derivable by KSS** from B and e· iff $H \succeq_{\theta} K$ for some Kernel Set K of B and e.

▶ **HAIL** Algorithm

- 1. Select a (seed) positive example e^+ .
- 2. (Abduction)
 - a. Create an abuctive task $\langle B, Ab, IC \rangle$, $O = \{e^+\}$, with IC empty, $Ab = \{h\theta \mid modeh(_, h()) \in M\}$, i.e. all ground head atoms. b. Find an abductive solution $\Delta = \{a_1, ..., a_n\} \subset Ab$.
- 3. (Deduction)
 - a. Derive ground instances of every $modeb(., b_{ij}) \in M$ through $B \cup \{\neg e^+\} \vdash b_{ij}\theta$ where θ is the grounding used in Δ .
 - b. Construct a set of rules with heads as in Δ and body atoms as derived above. This forms the grounded Kernel Set.
 - c. Find the immediate generalisation to yield the Kernel Set K.
- 4. (Induction)
 - a. Find the most compressed h with $h \succeq_{\theta} K$.
 - Can do this by drawing out entire lattice (K is at the bottom) and traversing down until no negative examples covered.
 - Can use abduction: $(B \cup T, \{use()\}, \emptyset), O = e \land not e_1^- \land \dots not e_n^-$
 - * For each $a_i \leftarrow b_{i1}, ..., b_{ik}$ in $K(B, e), j \in [1, k]$ add to your T:

 $a_i \leftarrow use(i, 0), try(i, 1, X^{i1}), ..., try(i, k, X^{ik}).$

 $try(i, j, X^{ij}) \leftarrow use(i, j), b_{ij}. try(i, j, X^{ij}) \leftarrow not \ use(i, j).$

5. Add h to B; remove covered e within E^+ . Go to (1) if $E^+ \neq \emptyset$.

5 Top-Directed Abductive Learning

- Aim to use mode declarations to define a **meta-level theory** capturing the search space and compute inductive solutions from it.
- Allows computation of recursive logic programs, multiple clauses/hypotheses, and (TAL) learning from normal logic programs.
- For below, we consider the mode M with m1 : modeh(1, p(+any)), m2: modeb(*, q(+any, -any)), m3: modeb(*, r(+any, #const)).
- ► **TopLog** Procedure
 - 1. Construct a top theory T.

a. For each modeh, e.g. p(+any), add to your T: $p(X) \leftarrow \$body(X)$

 $body(X) \leftarrow$

(multiple *modeh* can lead to multiple starts)

b. For each modeb, e.g. q(+any, -any), r(+any, #const), find bodypredicates which can be unified and add to your T:

 $body(X) \leftarrow q(X, Y), body(Y)$

 $body(X) \leftarrow r(X, C), const(C), body(X) \leftarrow r(X, C), const(C), body(X)$

- 2. For each positive example e^+ , construct an SLD derivation of e^+ from $B \cup T$. Each derivation corresponds to a hypothesis.
- 3. Find the hypothesis with best coverage, maximising:

 $score(h) = #entailed(E^+) - #entailed(E^-)$

- Monotonicity assumption: $B \cup H_1 \vDash e_1 \implies B \cup H_1 \cup H_2 \vDash e_1$. This holds for definite LPs, but, in general, not for normal LPs.
- ▶ TAL Procedure
 - 1. Encode modes as $\langle m_{label}, [consts], [inputs] \rangle$, e.g.

 $p(X) \leftarrow q(X, Y), r(Y, a)$

$\langle m1, [], [] \rangle, \langle m2, [], [1] \rangle, \langle m3, [a], [2] \rangle$

2. Construct a top-theory T_M , using aux predicates: link (to number inputs), append (to append to lists), rule (to mark rules), body, e.g.

 $p(V1) \leftarrow \mathbf{body}([V1], [\langle m1, [], [] \rangle]).$

 $body(InputSoFar, RuleSoFar) \leftarrow rule(RuleSoFar).$

 $body(InputSoFar, RuleSoFar) \leftarrow$ link([V1], InputSoFar, Links), q(V1, V2), $append(RuleSoFar, [\langle m2, [], Links \rangle], NewRule),$ append(InputSoFar, [V2], NewInputs),body(NewInputs, NewRule). $body(InputSoFar, RuleSoFar) \leftarrow$ link([V2], InputSoFar, Links), r(V2, A), $append(RuleSoFar, [\langle m3, [A], Links \rangle], NewRule),$ append(InputSoFar, [], NewInputs),

body(NewInputs, NewRule)

- 3. Solve the abductive task $\langle B \cup T_M, \{rule(.)\}, IC = \emptyset \rangle, O = E$. Starting goal is $\leftarrow e_1^+, ..., e_n^+, not e_1^-, ..., not e_m^-$. In the derivation, every aux predicate before *body* can be removed one at a time.
- 4. Decode the rules in the abductive solution Δ .

6 Stable Model Semantics

- Differences with previous paradigms:
 - In ASP, the order of body literals *does not matter*, but rules need to be safe: all variables of a rule R must occur in $body^+(R)$.
- Normal LPs may have a *non-unique LHM* it may even be unsupported.
- Finding ground(P), the **relevant grounding** of a program P.
- 1. Add all the ground facts of *P*.
- 2. Add all ground instances of rules whose grounded *positive* body atoms all appear as a head of some rule in ground(P).
- 3. Repeat (1) and (2) until no additional rule is added to ground(P).
- Finding P^X , the **reduct** of (a ground) P with respect to X. 1. Remove all rules R whose $body^{-}(R)$ contains some $x \in X$.
 - 2. Remove $body^{-}(R)$ for all remaining rules in R.
- An interpretation X is a stable model/answer set of a normal LP P iff $X = LHM((ground(P))^X).$
- An atom A is **bravely entailed** $(P \vDash A)$ by a normal LP P if it is true in at least one stable model of P. Whereas, it is cautiously entailed $(P \vDash_{c} A)$ if it is true in **all stable models** of P.

7 Answer Set Programming

- Constraints $(:-b_1, ..., b_m, not c_1, ..., not c_n)$ filter out unwanted answer sets. When computing the reduct, the empty head is replaced with \perp .
- Choice rules: $(a\{h_1, ..., h_n\}b := ...)$ allow the use of *disjunctions* in the rule head. When computing the reduct, if the aggregate A, wrt X, is:
- Not satisfied: remove the head (i.e. make the rule into a constraint). • Satisfied: copy the rule for each satisfied atom in A with it as the head.
- Opimisation statements: $(\# minimize[a_1 = w_1, ..., a_n = w_n])$ decide
- which solutions are more optimal than others. Usually, $w_i = \#vars(a_i)$.

8 Abduction in ASP and Cautious/Brave Induction

- An abductive task $\langle B, Ab, IC \rangle$, O can be represented in ASP by:
- \circ Listing out all rules in *B*.
- \circ Creating one big choice rule for all the (atom) abducibles in Ab.
- Set those in IC as constraints, and set the negation of O as a constraint > ProbLog: Efficient inference of success query with BDDs
- **Cautious induction** (ILP Task): given a background knowledge B, examples $\langle E^+, E^- \rangle$, find a hypothesis H such that:
- $\circ B \cup H$ is satisfiable (has at least one answer set)
- For all answer sets A of $B \cup H$, all e^+ are covered and no e^- are covered.
- Brave induction (ILP Task): as above, but there only needs to be at **least one** answer set A that covers all e^+ and does not cover any e^- .
 - Weaker than above but can not learn a constraint as a hypothesis.

▶ ASPAL: ASP Encoding Procedure

- 1. Add the background knowledge B.
- 2. Create and add the skeleton rules from the mode declarations.

- Add all possible rules that can be constructed from the mode declarations with constant placemarkers (e.g. C1) for constants, satisfying: * L_{max} : max # of literals allowed to appear in the rule body (ex-
- cluding those for types); V_{max} : max # of variables per rule.
- At the end of each rule, add an atom rule(i, C1, ..., Cn) to distinguish it as the *i*th rule with constant placemarkers C1, ..., Cn
- 3. Generate **hypotheses** from the skeleton rules.
 - a. Add a choice rule with all ground instances of the *rule* predicates. b. Add a minimisation statement that adds weights to each atom in the choice rule above, based on the number of atoms in the rule (not including those for asserting types nor the *rule* atom).
- 4. Add $goal := e_1^+, ..., e_n^+, not e_1^-, ..., not e_m^-$, and :- not goal.

9 Learning From Answer Sets

- Motivation: express both brave and cautious induction within a single learning task by having (partial) answer sets as examples rather than atoms. Hence, learning from answer sets.
- A partial interpretation $e = \langle e^{inc}, e^{exc} \rangle$ is a pair of sets of atoms the inclusions and the exclusions. • An interpretation I extends e iff $e^{inc} \subseteq I$ and $e^{exc} \cap I = \emptyset$.
- LAS (ILP Task): given $\langle B, S_M, E^+, E^- \rangle$ with ASP program B, partial interpretations E^+, E^- , and hypothesis space S_M .

Find a hypothesis H with $H \subseteq S_M$ such that:

- $\circ \quad \forall e^+ \in E^+ : \exists A \in AnswerSets(B \cup H) \text{ st } A \text{ extends } e^+.$
- $\circ \quad \forall e^- \in E^- : \nexists A \in AnswerSets(B \cup H) \text{ st } A \text{ extends } e^-.$
- Some examples for interpretting:

	$\langle \{v(C1,h), v(C2,h)\}, \emptyset \rangle$	$\langle \emptyset, \{v(C1,h), v(C2,h)\} \rangle$
In E^+	at least one AS contains both	at least one AS contains neither
In E^-	no AS contains both	all ASs must contain at least one of the two

• Relation to brave and cautious induction:

 $\circ ILP_{brave}\langle B, E^+, E^- \rangle \mapsto ILP_{LAS}\langle B, \{\langle E^+, E^- \rangle\}, \emptyset \rangle$

 $\circ ILP_{cautious}\langle B, E^+, E^- \rangle$

 $\mapsto ILP_{LAS}\langle B, \{\langle \emptyset, \emptyset \rangle\}, \{\langle \emptyset, e_i^+ \rangle \mid e_i^+ \in E^+\} \cup \{\langle e_i^-, \emptyset \rangle \mid e_i^- \in E^-\} \rangle$

10 Probabilistic Logic Programming

• (Herbrand) interpretations as possible worlds

• Finding the probability of a possible world

• A probabilistic logic **program database** is made up of a set of (mutually independent Boolean) **probabilistic facts** F and a set of **rules** R, where no fact unifies with any of its rule heads (the *disjoint condition*).

• A possible world ω is a vector $\langle x_1, ..., x_n \rangle$ with x_i as an outcome of F_i .

• In a sense, the prob. distributions of the given facts determine a prob.

distribution over the set of possible worlds W_F (logic programs Π_i).

• Given a set of probabilistic atoms $F = \{P_1 :: F_1, ..., P_n :: F_n\}$ and a

composite choice $k = \{(F_1, x_1), \dots, (F_n, x_n)\}$ for $x_i \in \{0, 1\}$, we have

 $P(k) = \prod_{(F_i,1) \in k} P_i \times \prod_{(F_i,0) \in k} (1 - P_i)$

• We also have probability of a formula/atom: $P(G) = \sum_{\omega : \models G} P(\omega_i)$.

1. Construct the entire SLD proof tree of a given query q wrt to the

2. Convert found DNF formula into a Binary Decision Diagram (BDD).

• Compose disjuncts by treating each group as a single literal.

b. Else return $p_n \cdot P(child_1) + (1 - p_n) \cdot P(child_0)$, where $p_n :: f_n$.

3. Find probability P(n) of root BDD node n (corresponding to fact f_n).

• Convert each disjunct, then compose them iteratively. • BDD of each conjunction is just a tree with each node

connected to zero and the next literal (or 1-terminal).

a. If n is 1-terminal (or 0-terminal), then return 1 (or 0).

probabilistic logic program \hat{T} . Take the disjunction of all the conjuncts

corresponding to each successful branch. (Order conjuncts consistently).

 $l_2 \wedge f_1 \wedge f_3$

• Define $(F_i, 1)$ as atom F_i being selected and $(F_i, 0)$ if not.