
COMP60013: Logic-Based Learning Notes

2 Logic and Logical Inference

• Clausal Representation Definitions

◦ Literal: atomic formula or its negation.
∗ It is ground if it contains no variables.

∗ l′ is an instance of l, if, for some substitution θ, l′ = lθ.

◦ Clause: disjunction of one or more literals.
∗ Horn clauses: at most one positive literal.

· {h} ← b1, . . . , bn
· Definite clauses: exactly one positive literal.
· Denials: no positive literal.

∗ Horn clauses can be extended by permitting atoms in the body of
rules to be prefixed with not.
· {h} ← b1, . . . , bn, not bn+1, . . . , not bm
· Normal clauses: exactly one positive literal.
· Normal denials: no positive literal.
· The not operator can only be used on ground instances.

◦ Theory: a conjunction of clauses (denoted as a set of clauses).

• Semantic Definitions (w.r.t. KB)

◦ Herbrand Domain (HD): the set of all ground terms formed using
only constants and function symbols that appear in KB.

◦ Herbrand Base (HB): the set of all ground atoms formed using
predicate symbols in KB and ground terms in the HD.

◦ Herbrand Interpretation (HI): (any subset of HB) a set of ground
atoms formed using constant, function, predicate symbols occuring in KB.

◦ Herbrand Model (HM): a HI that satisfies all clauses in KB.
∗ It is a Minimal HM iff none of its subsets is a HM of KB.
∗ If KB is a satisfiable set of Horn clauses then there is a unique

Minimal HM called the least HM (LHM).
∗ The LHM captures the semantics of KB.

◦ Grounding: set of all ground instances cθ, for c ∈ KB and unifier θ
replacing variables with terms in the HD.
∗ Clausal theory KB is satisfiable iff ground(KB) is satisfiable.

∗ Note: if fact a ∈ ground(KB), then all HMs of KB must contain a.

• Skolemisation:
◦ ∃X p(X) 7→ p(c), for some new constant c.

◦ ∀X∃Y p(X,Y ) 7→ ∀X p(X, f(X)), for some new function f .

• Resolution Procedure
◦ Given two clauses ϕ1 ∨ C1 and ¬ϕ2 ∨ C2,

∗ rename variables so they appear distinct in clauses ϕ1 and ¬ϕ2.

∗ for any substitution θ with ϕ1θ = ϕ2θ, infer (C1 ∨ C2)θ.

◦ It is refutation complete (KB ⊢ G iff KB ∪ ¬G ⊢ [ ]).

◦ Prolog uses SLD resolution
∗ It assumes working with a set of definite clauses and a denial.
∗ At each step, a new denial is resolved from a denial and a def. clause.
∗ By convention, the left-most denial atom, also called the subgoal, is

chosen for resolution. (no shortcuts - do it sequentially!)

∗ By definition, a derivation fails if the last element in the derivation is
not an [ ] and cannot be resolved any further.

◦ An extension to SLD for handling normal clauses is SLDNF.
∗ At any point, when the left-most term is prefixed with not:

1. Begin a new derivation for the negation of the term.

2. The result (success/failure) is then the opposite of the result inside.

∗ To show failure, one should show all branches fail.
∗ To start a derivation of the negation, the literal must be ground!

• Abduction
◦ An abductive task is given by ⟨KB,Ab, IC⟩, where

∗ KB (Knowledge Bsse): set of normal clauses

∗ Ab (Abducibles): set of ground undefined literals

∗ IC (Constraints): set of normal denials

◦ Given an abductive task and an observation O, an abductive solution
of O is a set ∆ of ground literals such that

(i) ∆ ⊆ Ab, (ii) KB ∪∆ ⊨ O, (iii) KB ∪∆ ̸⊨⊥, (iv) KB ∪∆ ⊢ IC

➤ An abductive proof involves two phases being called alternately:
1. Abductive phase

a. Set goal to be O and ∆ = {}.
b. Use SLDNF to prove the goal by refutation.
c. At each step, if the subgoal is:

∗ not an abducible, continue SLDNF.
∗ assumed abducible, resolve subgoal, continue SLDNF.
∗ abducible not yet assumed (neither its negation), begin

consistency phase with its negation.
d. Succeed when no further subgoals are left unproven.

2. Consistency phase
a. Add new assumption to current list ∆i.
b. Succeed when failure (black square) is derived.
c. At each step, if the subgoal is:

∗ not abducible, continue SLDNF.
∗ assumed abducible, resolve subgoal, continue SLDNF.
∗ negation of assumed abducible, fail entire denial.
∗ abducible not yet assumed, start abductive phase with its

negation (but don’t add anything to ∆i).

3 Inductive Logic Programming

• An inductive logic programming (ILP) task is a search problem involv-
ing minimising a loss function (the more general than relation).

• Given observations ⟨E+, E−⟩, a background knowledge B, and a covers
relation c, a predictive ILP task aims to find a hypothesis h with:

◦ c(B, h, e), ∀e ∈ E+ (completeness), ¬c(B, h, e) ∀e ∈ E− (consistency)

◦ We define c(B, h, e) as B ∪ h ⊨ e (learning from entailment).
◦ We call such an h an inductive solution.

• Concept Learning with a Version Space
◦ Learn definitions of concepts from positive and negative instances.

◦ It induces a version space - the set
of all hypotheses that are consistent
with the given positive examples.

◦ The top-most concept is the most gen-
eral. Concepts become more specific
down the lattice, eventually reaching
the positive examples.

◦ Aim to find hypothesis general enough to cover positive examples but
specific enough not to cover negative examples.

• Generality

◦ We say h is more general than h′ (h ≽ h′) iff c(h′, E) ⊆ c(h,E).
∗ i.e. h covers all examples covered by h′.
∗ In learning by entailment, C ≽ D iff C ⊨ D.

· We say C θ-subsumes D iff ∃θ with Cθ ⊆ D.
· If C θ-subsumes D, then C ⊨ D (but not converse!)
· Unlike ⊨, subsumption is decidable and thus a pruning strategy.

◦ If c(h, {e−}), then, for any g ≽ h, we have c(g, {e−}).
∗ Here, an ILP search needs to specialise (prune parents).

◦ If ¬c(h, {e+}), then, for any s ≼ h, we have ¬c(s, {e+}).
∗ Here, an ILP search needs to generalise (prune children).

◦ The lattice of clauses can be modified so that each node represents an
equivalence class between clauses that θ-subsume each other.

• ILP Learning Strategies
◦ Below, we make use of operators based on θ-subsumption.
◦ General to specific traversal (Top-down)

∗ Use a refinement or specialisation operator ρ.
· Add a literal in the body of the clause.
· Apply a substitution θ.

∗ Start from most general clause and keep refining until no e− is covered.
◦ Specific to general traversal (Bottom-up)

∗ Plotkin’s least general generalisation (lgg) operator: derive the
most specific clause that generalises two given clauses.
(terms) lgg(a, b) = X, lgg(f(X), g(Z)) = W

lgg(f(a, b), f(c, c)) = f(X, Y )
(literals) lgg(p(s1, ..., sn), p(t1, ..., tn)) = p(lgg(s1, t1), ..., lgg(sn, tn))
(clauses) lgg(C1, C2)

= {lgg(l1, l2) | l1 ∈ C1, l2 ∈ C2 ∧ lgg(l1, l2) defined}
∗ Start from most specific clauses (positive examples) and keep finding

lgg until most general clause not covering negative examples is found.

4 Combining Bottom-Up and Top-Down Search

• Language bias: a set of mode declarations that defines the language of
the hypothesis being searched (and thus restricts the search space).

◦ Mode declarations indicate the predicate that may appear in either
the rule’s head (modeh(r, s)) or body (modeb(r, s)).
∗ r (recall) indicates how many times a predicate may appear.

· By convention, r = 1 for modeh declarations.

· r = ∗ indicates it can be used as many times as possible.

∗ s (scheme) is a ground atom with placemarkers in the predicate.
· Placemarkers: +t (input), −t (output), #t (constant)

· Note: a variable can be an input variable if it is an output variable
in a predicate before it, e.g. A(X)← B(X,Y ), C(Y ).

• Inverse Entailment property: B ∪ {h} ⊨ e+ iff B ∪ {¬e+} ⊨ ¬h.
◦ Equivalently useful: iff B ∪ {¬e+} ∪ a ⊨ [ ].

• Bottom Generalisation (BG)

◦ For a ground atom e ∈ E+, theory B, and definite clause h,

◦ The bottom set of B and e is: Bot(B, e) = {lg | B ∪ {¬e} ⊨ ¬lg}.
◦ We say h is derivable by BG from B and e iff h ≽θ Bot(B, e),

i.e. Hθ ⊆ Bot(B, e) for some θ.

➤ PROGOL Procedure

1. Pick a (seed) positive example e+.

2. (BOTTOMSET)

a. Compute the negated bottomset: B ∪ {¬e+δ} ⊨ ¬Bot(B, e+).

◦ Either through SLD resolution or finding LHM(B ∪ {¬e+δ}).
b. Negate the result to get the bottom set Bot(B, e+).

c. Find its immediate generalisation, the bottom clause h⊥, by replac-
ing its constants with unique variables.

3. (SEARCH)
a. Find the most general h with h ≽θ h⊥ that does not entail any

negative examples through a top-down refinement process.

4. Add h to B; remove covered e within E+. Go to (1) if E+ ̸= ∅.

• Observation Predicate Learning (OPL): learning predicates whose
heads are the same as observed examples.

◦ BG with SLD (PROGOL) can only solve OPL tasks.
∗ This is because we may need to derive ¬P (x) for some P , but this

does not appear in any of the rule heads.

∗ PROGOL5 solves this by including each rule’s contrapositives in B.

∗ This STARTSET is incomplete when a ground head atom needs to
be used more than once in SLD derivation. This can be shown by
deriving a failure with the negated head atom as a goal.

➤ PROGOL5 Procedure

1. Pick a (seed) positive example e+.

2. (STARTSET)
a. Augment B with contrapositives of its rules and adding to it:
◦ The skolemised body literals of e+ if e+ is a definite clause.

◦ The negation of the (skolemised) head of e+.

b. For each modeh(r, s(.)) in the language bias M , start an SLD
derivation of its predicate’s negated form (i.e. ← non s(.))
◦ If successful, this step returns an atom a = sθ. Set a to be the

head of the hypothesis.

3. (BOTTOMSET)
a. With a as the head atom, derive body atoms bi that unify with θ

and satisfy modeb declarations through SLD on B ∪ {¬e+}.
b. The ground bottom clause is: ground(h⊥) = a← b1θ, ..., bnθ.

c. Find its immediate generalisation, h⊥ = s← b1, ..., bn

4. (SEARCH)
a. Find most compressed (least number of literals) hypothesis h ∈ SM

with h ≽θ h⊥ without entailing any e− ∈ E−.

5. Add h to B; remove covered e within E+. Go to (1) if E+ ̸= ∅.
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• Kernel Set Subsumption (KSS)
◦ For a ground atom e, set of definite clauses B, and a set of ground

definite clauses ground(K) = k1, ..., kn with ki = ai ← bi1, ..., bim,
∗ ground(K) is a ground Kernel Set of B and e

· iff B ∪ {ai ∧ ...∧ an} ⊨ e and B ∪ {¬e} ⊨ bij for all pairs i, j.
∗ The Kernel Set K of B and e is the immediate generalisation of

ground(K) compatible with the mode declarations.
∗ A set of definite clauses H is derivable by KSS from B and e

· iff H ≽θ K for some Kernel Set K of B and e.

➤ HAIL Algorithm

1. Select a (seed) positive example e+.

2. (Abduction)
a. Create an abuctive task ⟨B,Ab, IC⟩, O = {e+}, with IC empty,

Ab = {hθ | modeh( , h()) ∈M}, i.e. all ground head atoms.
b. Find an abductive solution ∆ = {a1, ..., an} ⊆ Ab.

3. (Deduction)
a. Derive ground instances of every modeb( , bij) ∈ M through

B ∪ {¬e+} ⊢ bijθ where θ is the grounding used in ∆.
b. Construct a set of rules with heads as in ∆ and body atoms as

derived above. This forms the grounded Kernel Set.
c. Find the immediate generalisation to yield the Kernel Set K.

4. (Induction)
a. Find the most compressed h with h ≽θ K.
◦ Can do this by drawing out entire lattice (K is at the bottom)

and traversing down until no negative examples covered.

◦ Can use abduction: ⟨B∪T, {use()}, ∅⟩, O = e∧not e−1 ∧...not e−n .

∗ For each ai ← bi1, ..., bik in K(B, e), j ∈ [1, k] add to your T :

ai ← use(i, 0), try(i, 1, X
i1

), ..., try(i, k,X
ik

).

try(i, j,X
ij

)← use(i, j), bij . try(i, j,X
ij

)← not use(i, j).

5. Add h to B; remove covered e within E+. Go to (1) if E+ ̸= ∅.

5 Top-Directed Abductive Learning

• Aim to use mode declarations to define a meta-level theory capturing
the search space and compute inductive solutions from it.

• Allows computation of recursive logic programs, multiple
clauses/hypotheses, and (TAL) learning from normal logic programs.

• For below, we consider the mode M with m1 : modeh(1, p(+any)),
m2 : modeb(∗, q(+any,−any)), m3 : modeb(∗, r(+any,#const)).

➤ TopLog Procedure
1. Construct a top theory T .

a. For each modeh, e.g. p(+any), add to your T :

p(X)← $body(X)

$body(X)←

(multiple modeh can lead to multiple starts)
b. For each modeb, e.g. q(+any,−any), r(+any,#const)), find $body

predicates which can be unified and add to your T :

$body(X)← q(X, Y ), $body(Y )

$body(X)← r(X,C), const(C), $body(X)

2. For each positive example e+, construct an SLD derivation of e+ from
B ∪ T . Each derivation corresponds to a hypothesis.

3. Find the hypothesis with best coverage, maximising:

score(h) = #entailed(E
+
)−#entailed(E

−
)

• Monotonicity assumption: B ∪H1 ⊨ e1 =⇒ B ∪H1 ∪H2 ⊨ e1. This
holds for definite LPs, but, in general, not for normal LPs.

➤ TAL Procedure
1. Encode modes as ⟨mlabel, [consts], [inputs]⟩, e.g.

p(X)← q(X, Y ), r(Y, a)

⟨m1, [], []⟩, ⟨m2, [], [1]⟩, ⟨m3, [a], [2]⟩

2. Construct a top-theory TM , using aux predicates: link (to number
inputs), append (to append to lists), rule (to mark rules), body, e.g.

p(V 1)← body([V 1], [⟨m1, [], []⟩]).
body(InputSoFar,RuleSoFar)← rule(RuleSoFar).

body(InputSoFar,RuleSoFar)←
link([V 1], InputSoFar, Links), q(V 1, V 2),

append(RuleSoFar, [⟨m2, [], Links⟩], NewRule),

append(InputSoFar, [V 2], NewInputs),

body(NewInputs,NewRule).

body(InputSoFar,RuleSoFar)←
link([V 2], InputSoFar, Links), r(V 2, A),

append(RuleSoFar, [⟨m3, [A], Links⟩], NewRule),

append(InputSoFar, [], NewInputs),

body(NewInputs,NewRule).

3. Solve the abductive task ⟨B ∪ TM , {rule(.)}, IC = ∅⟩, O = E. Start-

ing goal is← e+1 , ..., e+n , not e−1 , ..., not e−m. In the derivation, every aux
predicate before body can be removed one at a time.

4. Decode the rules in the abductive solution ∆.

6 Stable Model Semantics

• Differences with previous paradigms:

◦ In ASP, the order of body literals does not matter, but rules need to be
safe: all variables of a rule R must occur in body+(R).

◦ Normal LPs may have a non-unique LHM - it may even be unsupported.

• Finding ground(P ), the relevant grounding of a program P .

1. Add all the ground facts of P .
2. Add all ground instances of rules whose grounded positive body atoms

all appear as a head of some rule in ground(P ).

3. Repeat (1) and (2) until no additional rule is added to ground(P ).

• Finding PX , the reduct of (a ground) P with respect to X.

1. Remove all rules R whose body−(R) contains some x ∈ X.

2. Remove body−(R) for all remaining rules in R.

• An interpretation X is a stable model/answer set of a normal LP P iff

X = LHM((ground(P ))X).

• An atom A is bravely entailed (P ⊨b A) by a normal LP P if it is true
in at least one stable model of P . Whereas, it is cautiously entailed
(P ⊨c A) if it is true in all stable models of P .

7 Answer Set Programming

• Constraints (:− b1, ..., bm, not c1, ..., not cn) filter out unwanted answer
sets. When computing the reduct, the empty head is replaced with ⊥.

• Choice rules: (a{h1, ..., hn}b :− ...) allow the use of disjunctions in the
rule head. When computing the reduct, if the aggregate A, wrt X, is:

◦ Not satisfied: remove the head (i.e. make the rule into a constraint).

◦ Satisfied: copy the rule for each satisfied atom in A with it as the head.

• Opimisation statements: (#minimize[ a1 = w1, ..., an = wn ]) decide
which solutions are more optimal than others. Usually, wi = #vars(ai).

8 Abduction in ASP and Cautious/Brave Induction

• An abductive task ⟨B,Ab, IC⟩, O can be represented in ASP by:

◦ Listing out all rules in B.

◦ Creating one big choice rule for all the (atom) abducibles in Ab.
◦ Set those in IC as constraints, and set the negation of O as a constraint.

• Cautious induction (ILP Task): given a background knowledge B, ex-

amples ⟨E+, E−⟩, find a hypothesis H such that:

◦ B ∪H is satisfiable (has at least one answer set)

◦ For all answer sets A of B ∪H, all e+ are covered and no e− are covered.

• Brave induction (ILP Task): as above, but there only needs to be at

least one answer set A that covers all e+ and does not cover any e−.

◦ Weaker than above but can not learn a constraint as a hypothesis.

➤ ASPAL: ASP Encoding Procedure

1. Add the background knowledge B.

2. Create and add the skeleton rules from the mode declarations.

◦ Add all possible rules that can be constructed from the mode declara-
tions with constant placemarkers (e.g. C1) for constants, satisfying:
∗ Lmax: max # of literals allowed to appear in the rule body (ex-

cluding those for types); Vmax: max # of variables per rule.
◦ At the end of each rule, add an atom rule(i, C1, ..., Cn) to distinguish

it as the ith rule with constant placemarkers C1, ..., Cn
3. Generate hypotheses from the skeleton rules.

a. Add a choice rule with all ground instances of the rule predicates.
b. Add a minimisation statement that adds weights to each atom in

the choice rule above, based on the number of atoms in the rule
(not including those for asserting types nor the rule atom).

4. Add goal :− e+1 , ..., e+n , not e−1 , ..., not e−m., and :− not goal.

9 Learning From Answer Sets

• Motivation: express both brave and cautious induction within a single
learning task by having (partial) answer sets as examples rather than
atoms. Hence, learning from answer sets.

• A partial interpretation e = ⟨einc, eexc⟩ is a pair of sets of atoms - the
inclusions and the exclusions.
◦ An interpretation I extends e iff einc ⊆ I and eexc ∩ I = ∅.

• LAS (ILP Task): given ⟨B,SM , E+, E−⟩ with ASP program B, partial

interpretations E+, E−, and hypothesis space SM .

Find a hypothesis H with H ⊆ SM such that:

◦ ∀e+ ∈ E+ : ∃A ∈ AnswerSets(B ∪H) st A extends e+.

◦ ∀e− ∈ E− : ∄A ∈ AnswerSets(B ∪H) st A extends e−.

• Some examples for interpretting:

⟨{v(C1, h), v(C2, h)}, ∅⟩ ⟨∅, {v(C1, h), v(C2, h)}⟩
In E+ at least one AS contains both at least one AS contains neither

In E− no AS contains both all ASs must contain at least one
of the two

• Relation to brave and cautious induction:
◦ ILPbrave⟨B,E+, E−⟩ 7→ ILPLAS⟨B, {⟨E+, E−⟩}, ∅⟩
◦ ILPcautious⟨B,E+, E−⟩
7→ ILPLAS⟨B, {⟨∅, ∅⟩}, {⟨∅, e+i ⟩ | e

+
i ∈ E+} ∪ {⟨e−i , ∅⟩ | e−i ∈ E−}⟩

10 Probabilistic Logic Programming

• A probabilistic logic program database is made up of a set of (mutually
independent Boolean) probabilistic facts F and a set of rules R, where
no fact unifies with any of its rule heads (the disjoint condition).

• (Herbrand) interpretations as possible worlds
◦ A possible world ω is a vector ⟨x1, ..., xn⟩ with xi as an outcome of Fi.

◦ In a sense, the prob. distributions of the given facts determine a prob.
distribution over the set of possible worlds WF (logic programs Πi).

• Finding the probability of a possible world
◦ Define (Fi, 1) as atom Fi being selected and (Fi, 0) if not.

◦ Given a set of probabilistic atoms F = {P1 :: F1, ..., Pn :: Fn} and a
composite choice k = {(F1, x1), ..., (Fn, xn)} for xi ∈ {0, 1}, we have

P (k) =
∏

(Fi,1)∈k

Pi ×
∏

(Fi,0)∈k

(1− Pi)

◦ We also have probability of a formula/atom: P (G) =
∑

ωi⊨G P (ωi).

➤ ProbLog: Efficient inference of success query with BDDs
1. Construct the entire SLD proof tree of a given query q wrt to the

probabilistic logic program T . Take the disjunction of all the conjuncts
corresponding to each successful branch. (Order conjuncts consistently).

2. Convert found DNF formula into a Binary Decision Diagram (BDD).

◦ Convert each disjunct, then compose them iteratively.
◦ BDD of each conjunction is just a tree with each node

connected to zero and the next literal (or 1-terminal).

◦ Compose disjuncts by treating each group as a single literal.

3. Find probability P (n) of root BDD node n (corresponding to fact fn).
a. If n is 1-terminal (or 0-terminal), then return 1 (or 0).
b. Else return pn · P (child1) + (1− pn) · P (child0), where pn :: fn.
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