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1 Integrate-and-Fire Models

• These class of models assume that spikes of a given neuron have roughly the same form
and are more concerned about the frequency and timing of spikes.

• In general, neuron models where action potentials are described as events are called
Integrate-and-Fire (IF) models.

• The simplest of the IF models is the Leaky Integrate-and-Fire model, characterised by:

1. a linear differential equation to describe the evolution of the membrane potential;

2. a threshold for spike firing.

1.1 Integration of Inputs

• A neuron is like an RC circuit. It is surrounded by a cell membrane acting as an insulator.

1. When a short current pulse I(t) is injected, the cell membrane gets charged.

2. The cell membrane acts like a capacitor of capacity C.

3. As the insulator is not perfect, the charge will slowly leak over time through the cell
membrane. The membrane is characterised by a finite leak resistance R.

• Analysing the circuit, the law of current conservation gives:

I(t) = IR + IC

• Using Ohm’s law, the resistive current is IR = uR/R where uR = u− urest is the voltage
across the resistor. Whereas, the capacitive current is IC = Cdu/dt from the definition of
capacity. Thus

I(t) =
u(t)− urest

R
+ C

du

dt

• Introducing the time constant τm = RC of the ”leaky integrator” yields

τM
du

dt
= −[u(t)− urest] +RI(t)

• We refer to u as the membrane potential and τM as the membrane time constant of
the neuron.

• The solution to the differential equation above with initial condition u(t0) = urest +∆u is

u(t)− urest = ∆u exp

(
− t− t0

τm

)
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1.2 Pulse Input

• The amplitude of the voltage response of a leaky integrator depends only on the total
charge q =

∫
I(t)dt, i.e. area under the curve, and not the height of the current pulse.

Figure 1: Short pulses and total charge delivered on the membrane.

1.3 The Threshold for Spike Firing

• The firing time t(f) in the leaky integrate-and-fire model is defined by a threshold criterion

t(f) : u(tf ) = ϑ

• Immediately after t(f), the potential is reset to a new value ur < ϑ.

• We write t
(f)
u as the firing times of neuron i where f = 1, 2, . . . are the spike labels.

• The spike train of a neuron i may be denoted as the sequence of firing times

Si(t) =
∑
f

δ
(
t− t

(f)
i

)
where δ = 0 for x ̸= 0 and

∫∞
−∞ δ(x)dx = 1.

• Under a constant current, regular spikes can be observed. Increasing the current also
increases the firing rate.

Figure 2: Time course of membrane potential driven by constant input current I0 = 1.5. After a
spike, the potential is reset to ur = urest.

• Plotting du/dt against u, we find for I = 0 that urest is a stable fixed point. Whereas, for
I = Iconst > 0, there are no fixed points.

2 The Hodgkin-Huxley Model

2.1 Nernst potential

• It is known in thermodynamics that the probability of a molecule to take a state of energy
E is proportional to the Boltzmann factor p(E) ∝ exp(−E/kT ).
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• The energy of positive ions at location x is given by E(x) = qu(x) where q is the charge
in a static electric field and u(x) is the potential at x.

• Since there is a large number of ions, we may interpret the probability as an ion density.
Denote by n(x) the ion density at point x. The relation between the density at point x1

and point x2 is
n(x1)

n(x2)
= exp

[
−qu(x1)− qu(x2)

kT

]
• A difference in electric potential ∆u = u(x1)− u(x2) generates a difference in ion density.

• Solving the above equation for ∆u, we find that, at equilibrium, the concentration difference
generates a voltage

∆u =
kT

q
ln

n2

n1

called the Nernst potential.

2.2 Reversal Potential

• Embedded in the cell membrane are specific proteins which act as ion gates.

1. ion pumps actively transport ions from one side to the other;

2. ion channels allow the passage of ions.

• In neurons, there is more sodium outside the cell than inside, while the reverse is true for
potassium.

• At equilibrium, the difference in concentration in sodium ions causes a Nernst potential
ENa. When ∆u is smaller than ENa, more Na+ ions flow into the cell through sodium
ion channels. If it is larger, than ions flow out.

• The direction of current is thus reversed when the voltage ∆u passes ENa. Here, ENa is
called the reversal potential.

• Measured experimentally, we find EK < urest < ENa. Therefore, in the stationary state,
active ion pumps balance the flow of ions in and out the cell.

2.3 Hodgkin-Huxley Model

• The neuron cell can be expressed as a circuit as follows

1. The semipermeable cell membrane acts as a capacitor.

2. When an input current I(t) is injected into the cell, it either charges the capacitor or
leaks through the channels.

3. The sodium and potassium channels have leak resistances RNa and RK respectively.
The unspecific channel accounting for leaks has resistance R.

4. The Nernst potential for each ion type are represented by batteries with voltages ENa,
EK , and EL.

Figure 3: Circuit corresponding to the Hodgkin-Huxley model.
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• By the conservation of electric charge, the applied current can be split in a capacittive
current IC and further components Ik passing through the ion channels

I(t) = IC(t) +
∑
k

Ik(t)

• From the definition of capacitance, we find IC = Cdu/dt, and so

C
du

dt
= −

∑
k

Ik(t) + I(t)

• Since the resistance of the leakage channel is voltage-independent, and the voltage at the
leak resistor is u− EL, Ohm’s law yields

IL = gL(u− EL)

where gL = 1/R is the conductance of the leakage channel.

• Similarly, for the other ion channels, we find

C
du

dt
= gNa(ENa − u) + gK(EK − u) + gL(EL − u) + I(t)

However, the gNa and gK are voltage and time dependent depending on the number
of open channels. When all are open, then the maximum conductance ḡNa and ḡK are
observed.

• Using variables m,n, h to describe the probability that a channel is open at any moment,

C
du

dt
= ḡNam

3h(ENa − u) + ḡKn4(EK − u) + gL(EL − u)

Figure 4: Voltage dependence of the gating variables m,n, h.

• To reduce the model to a 2D system, we assume m is fast enough and reaches its steady
state early, i.e. m = m0. Whereas n ∼ 1− h =: w. The system is thus

C
du

dt
= ḡNam

3
0(1− w)(ENa − u) + ḡKw4(EK − u) + gL(EL − u)

τw
dw

dt
= −w + w0

3 2D Neuron Models

3.1 Fitzhugh-Nagumo Model

• For small ϵ > 0 and b0, b1 > 0, the model is given by

u̇ = u− 1

3
u3 − w + I

ẇ = ϵ(b0 + b1u− w)
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• When I = 0, there exists a stable fixed point (urest).

• When I > 0, there exists an unstable fixed point and a limit cycle.

• As the behaviour of the system changes from a stable to a limit cycle, this is called a Hopf
bifurcation.

3.2 Morris-Lecar Model

• Similar to the 2D Hodgkin-Huxley model, but with sigmoid functions and no exponents.

• It is given by

C
du

dt
= −g1m̂0(u)(u− u1)− g2ŵ(u− u2)− gL(u− uL) + I

dŵ

dt
= − 1

τ(u)
[ŵ − w0(u)]

where we have the activations

m̂0(u) =
1

2

[
1 + tanh

(
u− u1

u2

)]
, w0(u) =

1

2

[
1 + tanh

(
u− u3

u4

)]
τ(u) =

τw

cosh
(

u−u3

2u4

)
• When I = 0, there exists a stable, a saddle, and an unstable fixed point. The saddle can
be interpretted as the threshold.

• When I > 0 and the two fixed points merge, there exists one saddle and one unstable fixed
point.

• When I > 0 and only one fixed point remains, there is only an unstable fixed point.

3.3 Adaptive Exponential Integrate-and-fire Model

• Integrate and fire but with addiitonal exponential term.

• It is given by

τm
du

dt
= −[u− urest] + ∆t exp

(
u− θm
∆t

)
−Rw +RI(t)

τw
dw

dt
= a(u− urest)− w

• Together with this, whenever u = θm, we update u 7→ urest and w 7→ w + b.

• It is able to capture the behaviour of neurons pausing after some number of spikes before
continuing. A larger b means the pauses are more frequent, whereas a smaller one allows
for multiple burst before a pause.

4 Spatial Structure of Neurons

4.1 The Cable Equation

• It describes the flow of current across the dendrite. It is similar to that of inside the cell
membrane but allows for a longitudinal flow and thereby the spatial dynamics.
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Figure 5: Part of a dendrite and the corresponding circuit diagram.

• By Ohm’s law, we have

u(t, x+ dx)− u(t, x) = RLi(t, x)

• By the conservation of current, i.e. what comes in must come out

Iext(t, x) + i(t, x) = i(t, x+ dx) + C
du

dt

or equivalently,

i(t, x+ dx)− i(t, x) = Iext(t, x)− C
du

dt

• We assign specific quantities in terms of unit lengths:

RL = rLdx, C = cdx, Iext(t, x) = iext(t, x)dx, Iion(t, x) = iion(t, x)dx

• Substituting, dividing by dx, and taking the limit dx → 0 leads to

∂

∂x
u(t, x) = rLi(t, x)

∂

∂x
i(t, x) = c

∂

∂t
u(t, x) +

∑
ion

iion(t, x)− iext(t, x)

• Taking the derivative of above and substituting below,

∂2

∂x2
u(t, x) = crL

∂

∂t
u(t, x) + rL

∑
ion

iion(t, x)− rLiext(t, x)

4.2 Model of Synapse

• The synaptic current is given by

Isyn(t) = gsyn(t)(u(t)− Esyn)

where we model the synaptic conductance following an exponential decay

gsyn(t) =
∑
f

ḡsyn exp

(
− t− tf

τ

)
O(t− tf )

O(x) =

{
0 if x < 0

1 if x ≥ 0

4.3 Modelling Noise

4.3.1 Noise in the Input

• Consider adapting the integrate-and-fire model and adding a deterministic noise or some
other stochastic noise, e.g. white noise, colored noise

τm
du

dt
= f(u) +RIdet +RInoise
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4.3.2 Stochastic spike arrival

• We can induce a weighted current every time a presynaptic neuron spikes

τm
du

dt
= f(u) +RIdet +

∑
k

∑
tfk

wkδ(t− tfk

4.3.3 Noise in the output

• We may allow spiking before reaching a threshold, yielding some probability of spiking

s = f(u(t)− θ)

where the probability is higher the closer the potential is to the threshold.

5 Characterisation of neural activity

5.1 Rate as spike count

• We count the number of spikes nsp and denote the average as the rate

ν =
nsp

T

• To consider deviations from trial to trial, we devise the Fano factor

F =
⟨∆n2

sp⟩
⟨∆nsp⟩

which is the variance divided by the mean.

5.2 Rate as spike density

• The average spike count may be unreliable when the duration of spiking is not very long.

• Consider instead a time delta common to all k trials. Measuring the spike density,

ρ =
1

∆t

1

K

∑
k

nk(t, t+∆t)

• Alternatively, in terms of the spike train, we have

nsp
k =

∫ t+∆t

t

sk(t
′) dt′

5.3 Rate as population activity

• Assume neurons are equivalent, then we average across the neurons

A =
1

∆t

nact(t, t+∆t)

N

or, alternatively in terms of spike trains,

A(t) =
1

∆t

1

N

∫ t+∆t

t

∑
k

∑
tf

δ(t′ − tfk) dt
′
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5.4 Interspike interval

• Measure the intervals between spikes and derive their distribution

P0(s) = P (tf + s | tf )

where ∫ t+∆t

t

P (t′ | tf ) dt′

is the probability that the next spike occurs in the interval [t, t+∆t].

• The mean and variance are given by

⟨s⟩ =
∫ ∞

0

sPo(s) ds

⟨∆s2⟩ =
∫ ∞

0

s2P0(s) ds− ⟨s⟩2

• To determine the regularity of the intervals, we consider the coefficient of variation cv

cv =
⟨∆s2⟩
⟨s⟩2

• Note that a Poisson process has cv = 1. And so, if cv > 1 then it is less regular than a
Poisson process, otherwise it is more regular.

• If spiking is periodic, then cv = 0, whereas cv > 1 if it is bursting.

5.5 Neural Networks

5.6 Neural Networks as a Population Description

• We assume that the network is homogeneous, that is:

1. identical neurons

2. identical inputs

3. statistically homoegeneous connectivity

• The stationary population activity is the mean firing rate of a single neuron and is thus

A0 = νi

where we note A0 is a spatial average and νi is a temporal average.

5.6.1 Rate neuron description

• We call a population of homogeneous neurons interconnected as a rate neuron.

• We may adapt the firing rate of a single neuron under the IF model to include both noise
and time dependence.

• Originally, we have the gain function

νi = g(I0) = τ ln

(
RI0

RI0 − (θ − urest)

)−1

for RI0 > θ − urest.

• Adding noise, the original equation becomes

τ
du

dt
= −[u− urest] +RI0 + ση

where at each time step, we draw random numbers from a Gaussian with variance σ2. We
can abstract this curve as a smoothened sigmoid gain function

νi = gσ(I0) =
α

1 + e−β(I0−γ)
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• Indeed at the steady state, we have

ν = gσ(I0)

• The time-dependent firing rate can be modelled as a low-pass filter of the steady state

τ
dν

dt
= −ν + gσ(I(t))

5.6.2 Rate neuron with self-connection

• Suppose a neuron is connected to itself with weight w, then the dynamics of its firing rate
is governed by

ν̇ = −ν + g(wν + I)

• Depending on the weight, we either get a single stable point or a bistability together with
an unstable point. This bistability allows for a model of working memory.

5.6.3 Two inhibitory rate-neurons coupled

• A presynaptic neuron is inhibitory if it induces a negative current.

• The firing rates are governed by

ν̇1 = −ν1 + g(−wν2 + I)

ν̇2 = −ν2 + g(−wν1 + I)

• This yields three fixed points: two stable on opposite ends and one unstable. In either of
the stable fixed points, the firing rate of one neuron is high whereas the other is low. This
exhibits an inhibitory behaviour between two neurons.

5.6.4 One inhibitory and one excitatory neurons coupled

• The firing rates are governed by

ν̇E = −νE + g(wEEνE − wEIνI + IE)

ν̇I = −νI + g(wIEνE − wIIνI + II)

• This yields one stable fixed point. As shifting the nullclines left or right either increases or
decreases both neuron activity at the same time, this explains the correlation of inhibitory
and excitatory firing rates observed in practice.

5.6.5 Continuous Rate Network

• Alsok known as a ring network, involves neurons encoding for visual stimuli with preferences
on the orientation of some stimulus.

• That is, a neuron may prefer an orientation somewhere between 0 and 2π radians. To
account for the cyclic nature of angles, we connect neurons together in a ring.

• Denoting the weight of the connection from neuron a to b as wab = w(θa, θb), we have
the continuous rate equation

τ
dν(θ)

dt
= −ν(θ) + g

[∫ π

−π

w(θ, θ′)ν(θ′)dθ′ + I(θ)

]

• Often we use w(θ, θ′) = cos(θ − θ′) as for |θ − θ′| small (big), w is positive (negative).
This leads to inhibitory behaviour when a neuron is completely different in orientation and
an excitatory behaviour with similar orientation neurons.
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5.6.6 Original Ring Network

• Under the continuous rate network, we may present a stimulus: an oriented bar with degree
θ0 and model the current coming into a neuron i with preferred orientation θi as

Ii(θ0) = c[(1− ϵ) + ϵ cos(2(θi − θ0))]

where c denotes the image contrast and ϵ is how strong the input is modulated.

• Two observations from experimental data can then be explained:

1. contrast invariance - increasing the contrast of the stimulus, the tuning curve (firing
rate function in terms of orientation) does not get broader. Even though the input
current to the neurons become broader, the firing rate does not. A form of inhibition
is responsible for this invariance and is known as the iceberg effect.

2. sustained activity - after removing an induced stimulus, neurons persist to fire with
the same pattern. Some form of bistability is responsible where there is a stable fixed
point at a high firing rate.

5.7 Neural Networks of spiking models

• We aim to adapt IF models for a large number of neurons and hopefully address experimental
results showing low spiking rate but high variance - akin to a Poisson process.

5.7.1 Balanced Network

• Neurons are assumed to

1. be identical

2. receive the same current

3. have statistically uniform connectivity

• The number of excitatory and inhibitory neurons NE and NI are very large.

• Each neuron gets KE = K, KI = γK number of incoming synapses.

• Given rX , rE , rI as the firing rate of the external input, excitatory neurons, and inhibitory
neurons respectively, the neurons receive a mean input

µE = K[wEErX + wEErE − γwEIrI ]

µI = K[wIErX + wIErE − γwIIrI ]

and input variance

σ2
E = K[w2

EErX + w2
EErE + γw2

EIrI ]

σ2
I = K[w2

IErX + w2
IErE + γw2

IIrI ]

• Note that if we keep the weights of the network the same but scale it ten times bigger, we
should expect that the output is ten times more frequent. However, this is not the case
experimentally. We observe low firing rate with high variance. So, we attempt to scale the
synaptic weights based on the number of incoming synapses K.

• If we consider a weak coupling, that is, scale the synaptic weights relative to the number
of connections, i.e. w 7→ w/K, then we have

µE = wEE(rX + rE)− γwEIrI

σ2
E =

1√
K

√
w2

EE(rx + rE) + w2
EIrI

• While the mean does not grow with K, the variance tends to zero suggesting a regular fire
rate which is inconsistent with data.
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• If we consider a strong coupling, that is scale w 7→ w/
√
K, we get

µE =
√
K(wEE(rX + rE)− γwEIrI)

σ2
E =

√
w2

EE(rx + rE) + w2
EIrI

• While the variance does not shrink with K, the mean firing rate grows with K which is yet
again inconsistent with data.

• However, if the above term is of a certain order, then this is not a problem:

wEE(rX + rE)− γwEIrI ∼ O

(
1√
K

)

• The above LHS is called the balanced state.

• The idea is that the excitatory and inhibitory currents are both large but cancel each other
out, thereby leading to low mean firing rate but the variance of which is the sum of the
variance of two incredibly large currents.

6 Learing and Memory

• Three types of learning

◦ unsupervised learning: learn statistics of inputs

◦ reinforcement learning: learn with a reward

◦ supervised learning: have reward signals at any point

6.1 Unsupervised learning

• Hebb principle: ”Who fire together, wire together”.

• In experiments, it is observed that by firing a presynaptic and postsynaptic neuron together
multiple times, the weight of the postsynaptic response becomes bigger. This phenomenon
is called potentiation. If it lasts longer than 30 minutes than it is called long-term
potentiation.

6.1.1 Hebbian learning in rate-based formalism

• Consider a presynaptic neuron with firing rate xi and a postsynaptic neuron with firing
rate y, with a synaptic weight of wi connecting the two. The dynamics of the weight can
change by

dwi

dt
= F (wi, xi, y)

for all i, where F is only concerned with other local neurons xj . That is, the weight isn’t
influenced by neurons that are far from it.

• Expanding F in a Taylor series,

dwi

dt
= c0(wi)+cpre1 (wi)xi+cpost1 (wi)y+cpost2 (wi)y

2+cpost2 (wi)x
2
i+ccorr11 (wi)xiyi︸ ︷︷ ︸

correlation term

+O
(
x3
)

• By only considering a pure Hebbian term, i.e. the correlation, we have

dwi

dt
= ccorr11 xiy

• Since wi is changing much slower than xi and y, we can take the temporal average

dwi

dt
= ccorr11 ⟨xiy⟩
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• In a linear rate-framework, the postsynaptic firing rate y is the weighted average of the
incoming firing rates and thus

y =
∑
j

wjxj

and so
dwi

dt
= ccorr11

∑
j

⟨xixj⟩wj

• Define Qij = ⟨xixj⟩ as an entry to the input correlation matrix Q. Then we have, for all
the weights,

dw⃗

dt
= ccorr11 Qw⃗

• However, this only continues to grow over time which is physically not correct. to address
this we can consider

◦ introduce a hard bound 0 < wi < wmax, but all weights will become fixed at wmax

inhibitting any possible form of learning.

◦ induce some depression

6.1.2 Covariance rule

• We assume that only when the presynaptic and postsynaptic neurons spike together more
than their average do their weights strengthen, i.e.

τw
dw⃗

dt
= (x− θx)(y − θy)

where θx = ⟨x⃗⟩, θy = ⟨y⟩ are the temporal averages.

• Writing as entries on a matrix,

Cij = (xj − ⟨x⟩)(xi − ⟨x⟩)

we get

τw
dwi

dt
=
∑
j

(xj − ⟨x⟩)wj(xi − ⟨x⟩)

τw
dw⃗

dt
= Cw⃗

6.1.3 BCM learning rule

• Consider adding depression on the Hebbian learning rule

τ
dw⃗

dt
= x⃗y(y − θ)

• When we have two incoming x1, x2 with x1 =⇒ y < θ and x2 =⇒ y > θ, then we find
that w1 → 0 and w2 → wmax. This phenomenon is called selectivity.

• However, if both x1, x2 are induce y < θ, e.g. when θ is absurdly high, then the postsynaptic
neuron becomes a silent neuron. This is not good as it costs energy to maintain these
weights and connections despite the neuron having the inability to function.

• To account for this, we make θ dynamic by adding the updating rule

τθ
dθ

dt
=

y2

ytarget
− θ

• Now, even if x1, x2 both induce y < θ, the threshold adjusts itself by sliding until one of
the presynaptic rates are greater than it, thus allowing for selectivity once again.

• The average post-synaptic rate has a steady state of ytarget as later ⟨y⟩ = θ.

• Selectivity in neurons is beneficial in the development of infants, e.g. certain neurons learn
to look for certain important features.
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6.1.4 Spike-timing dependent plasticity (STDP)

• Experimentally, we find that if a postsynaptic neuron fires as soon as a presynaptic neuron
fires, then their synaptic weight increases. Otherwise, it decreases.

• To model this, we may add a trace that decays after each pre and post spike. We compare
at each pre spike if a non-zero post spike exists and vice-versa. Denote by x and y the
amount of trace for the pre and post spike.

τ+
dx

dt
= −x+ δ(t− tpre)

τ−
dy

dt
= −y + δ(t− tpost)

• Then we can update the weight as

dw

dt
= A+xδ(t− tpost)−A−yδ(t− tpre)

• This allows us to learn two things:

1. Responding to earlier stimulus - when multiple preseynaptic neurons fire sequentially
to the same postsynaptic neuron, we find that the increase in weights shift the
postsynaptic response earlier to the point where the latter presynaptic neuron weights
are substantially lower than that of the first one.

2. Learning sequences - when we have a series of neurons that are hooked up linearly,
we find that the weights strengthen in one direction.

6.2 Supervised learning

• The goal of this learning paradigm is to learn associations between inputs x⃗µ and target
output yµt . That is to have the produced output yµ → yµt .

• Here, the actual output is binary, either a spike or no spike.

• Given this network of inputs (presynaptic neurons) and a single output (postsynaptic
neuron), we have a structure called a perceptron.

• The corresponding output is given by

yµ = O

[∑
i

wix
µ
i − b

]
where O is the Heaviside step function and b is the firing threshold.

• The error of the prediction can be given by

E = (yt − y)2

and the derivative with respect to a weight wi is

dE

dwi
= 2(yt − y)xi

• The discrete and continuous learning rules are thus

w⃗ = w⃗ + αx⃗(yt − y)

τw
dw⃗

dt
= x⃗(yt − y)

where α is called the learning rate.

• Geometrically, the perceptron defines a hyperplane. If we plot the data points and label
them accordingly, then the task is essentially to linearly separate the two clusters.

• For example, we can learn AND and OR gates as they are linearly separable. To tackle
nonlinearly separable data such as XOR gates, we stack layers of perceptrons. In this
case, the second layer could learn the concept of an OR gate and an NON-AND gate and
therefore learn an AND gate as an output neuron to therefore produce an XOR.
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6.3 Reinforcement Learning

6.3.1 Rescola-Wagner Rule

• Given a stimulus u (either zero or one) and a reward r, we have the expected reward

v = wv

where w is the weight to be learned.

• The goal is to minimize the error
E = (r − v)2

• Measuring the change in the error in terms of the weights

∂E

∂w
∝ (r − v︸ ︷︷ ︸

δ

)u

where δ is called the prediction error.

• The update rule is thus given by
w 7→ w + ϵδu

where ϵ is the learning rate.

6.3.2 Blocking experiment

• When an animal is trained to expect:

s1 → r

s1 + s2 → r

for stimuli s1 and s2, the animal does not associate s2 as leading to a reward.

• This is consistent with the rule as when s1 is fully learned, then w1 = 1 leading to an error
of zero. As such, δ = 0 and there is no learning, i.e. no updating of weight w2.

6.3.3 Secondary conditioning

• When an animal is trained to expect:

s1 → r

s1 → s2 (no reward)

the animal associates both stimuli as leading to a reward.

• However, this is inconsistent with the learning rule as if s1 → r, then it learns w1 = 1.
However, since we can have s1 + s2 but no reward, then it learns that w2 := −w1.

6.3.4 Temporal difference (TD) learning

• This improves upon the previous learning rule by taking time into account.

• Define v(t) as the expected value of the total future reward from time t. We can estimate
this as

v(t) ∼ ⟨
T−t∑
τ=0

r(t+ τ)⟩

where T is the total time of the experiment.

• We can model this as a weighted sum of the temporal inputs

v(t) =

t∑
τ=0

w(τ)u(t− τ)
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• The corresponding error is thus

E =

(∑
τ

r(t+ τ)− v(t)︸ ︷︷ ︸
δ(t)

)2

• However, this is in terms of the future which is inaccessible. Instead, we write the recurrence
relation

T−t∑
τ=0

r(t+ τ)︸ ︷︷ ︸
v(t)

= r(t) +

T−t−1∑
τ=0

r(t+ 1 + τ)︸ ︷︷ ︸
v(t+1)

and so we have the learning rules

δ(t) = r(t) + v(t+ 1)− v(t)

w(τ) → w(τ) + ϵδ(t)u(t− τ)

7 Hopfield network

• We take inspiration from spins of electromagnets in physics and consider weights equal to
the product of spins.

• We use hi(t) to denote the current at time t.

7.1 Pattern storing

• Given N binary neurons, with si = ±1, the task of the network is to learn M different
kinds of patterns pµi .

• That is, we want the neurons to be at pµi and stay there, i.e. it is the fixed point

si(t) = si(t+∆t) = pµi

• We have the probability of neuron i firing

P (si(t+∆t) = 1 | hi(t)) = g

∑
j

wijsj(t)


and assign the weights as

wij = c

M∑
µ=1

pµi p
µ
j

for some c > 0, under a Hebbian-like learning scheme.

7.2 Pattern retrieval

• We want to converge to the fixed point corresponding to the pattern µ which is most
similar to the initial condition.

• Define the overlap of the target pattern and the prediction as

mµ(t) =
1

N

∑
i

pµi si(t)

• Then the current in terms of the overlap is

hi(t) =
∑
j

wijsj(t) = c

µ∑
j=1

M∑
µ=1

pµi p
µ
j sj(t) = cN

M∑
µ=1

pµi m
µ(t)
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• Taking c = 1/N , we thus have the probability of a neuron i firing

P (si(t+∆t) | hi(t)) = g

(
M∑
µ=1

pµi m
µ(t)

)

that is, the dynamics of retrieval are determiend by the overlap of patterns.

kkkjjhghjkkjhgllllllllkfkjgktyeb klkllklkopopooklkgggffvb cdsxzasd
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