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Abstract

Paired comparison experiments are found in numerous scenarios in practice. That is, a
ranking is often desired pertaining to the results of tabulating preferences between two
objects. We focus on tennis matches as it is most notable for utilising this format and being
rich in player data. Existing modelling attempts such as the Bradley-Terry (BT) model
and both Elo and Glicko rating schemes are introduced with their underlying motivations.
Further applications such as evaluating the effects of momentum and appropriate parameter
estimates are also explored. In addition, we propose a Markov chain based model, one we
refer to as the Fickle Fan (FF) model, and provide relevant background on its processes. A
natural Bayesian extension to the BT model is also examined by placing priors on players’
strengths and using the MAP estimate obtained from running the Metropolis-Hastings
algorithm to predict match outcomes. Subsequently, these models are applied to the 2017
ATP men’s tennis data set. Their accuracy is evaluated through rank correlation and
likelihood heuristics such as multi-fold cross-validation on the ATP points ranking at the
end of 2017. Across the metrics, the BT and FF models outperform their counterparts
by small margins. Elo, Glicko, and its derivative Glicko2 scored nearly even. We cite our
choice of rating periods to have been substantial to yielding this result. As is the case with
most of the models, the novelty FF model is found to have a significant rank correlation.
Suggested refinements to it include fine-tuning the proportionality constant and using a
different weighting system for transition probabilities. The Bayesian extensions of the BT
model have best-performing MAP estimates coming from the gamma prior, suggesting it
may be more in line, compared to normal and uniform priors, to the true skill distribution
within the chosen tennis data set.

Keywords. paired comparison, Bradley-Terry, Elo, Glicko, Markov chains, Bayesian prior,
cross-validation, tennis, momentum.
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Chapter 1

Introduction

In a vast number of disciplines, a ranking is often desired from an available list of subjective
comparisons between two objects. Formally, a paired comparison experiment involves
presenting stimuli to independent judges, each of which declare their preference between
any two of them (David, 1963). From there, a ranking could be constructed. In fact, this
process exhibits a more general behaviour, as the margin of preference is kept (Kendall and
Smith, 1940) and non-transitivity between stimuli is considered (Kendall, 1955). Typically,
these ranking models have been used to decide between subjective, if not, borderline equal
stimuli to some extent. Relevant uses include decision making in multi-agent systems (Ito
and Shintani, 1997) and psychophysical measurement in social values (Thurstone, 1927).
A more popular practice, however, is that of sports analytics.

We shift our focus to the natural inclination of ranking players in sporting disciplines.
Tennis, in particular, presents a rich set of data with heterogeneity in tournament formats,
surface types, and margins of victory in results. Players are also a form of multi-dimensional
stimuli. That is, they have certain traits both physically and those intangible which may
affect their match results. Here, paired-comparison is framed as preferring players who
have won their matches, and, in this case, the goal is to construct a ranking based on
existing match data. As with the subjective nature of ranking skill, models can further
take into account pieces of co-variate data to develop a more accurate evaluation in tune
with the noticeable trends in practice. We consider tennis data sets in the succeeding
chapters for this purpose.

Extensive work has been made in this particular area of research within the past century.
With this in mind, we define our objectives of the paper to be as follows: (1) understand
and summarize the current state of the field, (2) remark on the strengths and history of its
developments, and (3) apply working theory to appropriate real data in hopes of comparing
the suitability of our models on the chosen data set. In doing this, throughout the paper,
we will also provide noteworthy insights as we see fit along the way in an attempt to
motivate the paper and contribute to the field.

The first main focus of the paper will be the Bradley-Terry (BT) model, whose
inception was in many ways, as we will come to see, integral to establishing the field.
Prior to this, we will first formalize the concept of stochastic transitivity which will be a
fundamental premise in our analysis to follow. Additionally, at this time, we will give an
account of the Thurstonian model that, as one of our first major results, we will relate to
Bradley-Terry via another established framework in the field, Luce’s Choice Axiom. We
end this section with one of the highlights of the paper, using the BT model to statistically
examine the effect of momentum in professional tennis.

Following this we move our attention to the Elo and Glicko models, which arise
as a result of modelling the expected wins of a player in a competitive setting. This
differs fundamentally from models discussed prior to this point and makes these models
especially powerful tools for the application at hand – modelling professionally tennis
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players. Additionally, at this point we propose our own model for rating tennis players, to
which we bestow the name the Fickle Fan model.

In Chapter 3, we briefly discuss extending ranking models with Bayesian inference, by
fitting ratings with a presumed (prior) distribution for skill. This is different from the
distribution of an individual player’s strength from game-to-game that is a fundamental
assumption of all competitive game ratings (this is the assumption that allows a player
to be beaten by an opponent with lower rating), and instead refers to the distribution of
skill across the whole player population. These distributions are implemented to enforce
beliefs we may have about the player-base from prior knowledge or intuition. We will see
how these priors affect rating by exploring our standard professional tennis data set under
a modified BT model with three different prior distributions. To do this, we will employ
a numerical means of sampling from otherwise complicated posterior distributions, the
Metropolis-Hastings algorithm.

As the models have been discussed extensively, we then proceed to evaluate their
fits in the 2017 ATP men’s professional tennis data set through three different criteria:
Spearman’s rank correlation coefficient, the Brier score, and multi-fold cross-
validation. Chapter 4 introduces the key ideas and areas each test aims to measure
as well as their pitfalls and how we overcome them. Specifically, the similarity of ranks
produced to the actual ranks at the end of the data set’s time period is measured, a test for
correlation in a small sample size is performed, and the likelihood of match outcomes under
each fit is compared. The set-up for each model is briefly mentioned including how the
initial parameters are either arbitrarily set or fine-tuned through maximising the likelihood
of observations. We then attempt to explain the results in connection with the theory
behind each model and the qualities pertaining to the data set used.

To conclude the introduction, we highlight our key findings and developments from
throughout the paper to summarize the areas in which we offer extension (bonus) material.
In chronological order, the first of these sections extends our work on the BT model by
outlining a means in which we are able to perform a hypothesis test on how momentum
affects professional tennis players, looking at real data. To do this, we first carefully develop
theory on the asymptotic behaviour of multivariate parameters in our statistical model to
be able to construct confidence intervals for our test statistics, before writing custom code
to partition our match data and compute a closed form for our log-likelihood function and
multidimensional Fisher Information matrix. At the end of chapter 2, we take inspiration
from existing models to develop our own system for modelling player rankings, based on
Markov chains, accounting for the drawbacks and limitations of our proposal to ultimately
achieve a functional system. A Bayesian extension to the Bradley-Terry model is explored
in chapter 3, with different choices for prior distributions set on the strengths of players.
We outline the background and technical aspects of how we aim to retrieve the desired
MAP estimate and related setbacks. To round off our paper, in chapter 4 we study different
means of comparing our rating systems, drawing methods from an array of different fields
and papers. In addition to performing computational simulations to obtain results, this
section includes a comprehensive discussion on the performance of the various models on
our data set, offering a natural conclusion to the paper.
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Chapter 2

Discussion on Models

In this chapter, we provide a brief introduction to each of the model’s theory and derive
reasonable conclusions from the ATP men’s professional tennis data set. Naturally, the
models’ strengths and pitfalls lie within the boundaries of its assumptions. For example,
a paired-comparison is deemed balanced if all judges are able to cast votes between any
two stimuli (David, 1963). In sports, this is akin to a round-robin tournament. However,
this not always the case as with single or double elimination formats. In their respective
sections, we describe ways in which the models attempt to overcome these problems and
other practical considerations. We begin from the ideas of Bradley and Terry.

2.1 Stochastic Transitivity & the Bradley-Terry Model

We begin our discussion into the field of pair-comparison with a look at the history of the
subject and the early work forming the basis for one of the main results we will investigate
in this paper, the Bradley-Terry model (BT model). This section will comprise an account
of a few models predating the BT model which although devised separately will provide us
with a natural way of establishing this section’s primary model. We will establish these
models as being characterized by modelling the probability of a player, player i, beating
an opponent, player j. We write this as P(i ≻ j) = pij .

In addition to our work on the BT model, we discuss stochastic transitivity at the start
of the section. This discussion will motivate the work to follow by outlining a theoretical
framework that will guide our study into these types of models.

Lastly, to develop the BT model, we investigate the construction of confidence intervals
and hypothesis testing using the asymptotic normality properties of our maximum likelihood
estimator (MLE) for our model. This will allow us to conclude the section by applying our
theory to real data on historical matches between professional tennis players, in order to
statistically test the existence of momentum in the sport.

2.1.1 Stochastic Transitivity

Before we begin exploring models, we introduce the concept of Stochastic Transitivity
which will be useful in our work later. Picturing a setting with three players i, j, and k,
(in general, we will write J as the set of all players) we consider the binary relation ≻ to
mean “beats,” and therefore we may write “player i beats player j” as i ≻ j. Assuming
transitivity, we have

i ≻ j and j ≻ k =⇒ i ≻ k

However in the case of players in a tournament, it may not necessarily be the case that
player i is guaranteed to beat player k given i ≻ j, and j ≻ k. Hence we model this with

5



stochastic transitivity, writing

P(i ≻ j) = pij and P(j ≻ k) = pjk =⇒ P(i ≻ k) = X

for X dependent on pij and pjk. Specifically, we will be interested in stochastic transitivity
by composition, which states X = F(pij , pjk), for a symmetric strictly monotone-increasing
(in the first element) function F : [0, 1]× [0, 1]→ [0, 1]. In such a case, we look to identify
a pair (F, µ) for a comparison function, F , and corresponding scoring function µ (defined
below) such that

P(i ≻ k) = F(pij , pjk) = F (µi − µk)

as outlined by Oliveira (2018). Although at first glance this may seem complicated, it in
fact yields the following intuitive interpretation:

Given a function µ : J → R, µ(i) = µi can be thought of as the “score” of player
i, for i ∈ J . With such a scoring function we define a comparison function to be any
strictly increasing continuous function, F : R→ [0, 1], such that F (d) + F (−d) = 1, and
pij = F (µi − µj).

Example: Take for example a particular case of a game of rock-paper-scissors between
three players. Assuming, each player throws a distinct hand (J = {R,P, S}) – i.e. player
R will only throw rock – we assign the comparison/scoring function pair (F, µ) as

µ(i) =


0 i = R

1 i = P

2 i = S

, F (d) =

{
1 d ∈ {−2, 1}
0 else

This example also showcases the difference between stochastic and standard transitivity,
as pRS = F (−2) = 1 (the probability of Rock beating Scissors) and pSP = F = 1 (the
probability of Scissors beating Paper), however pRP = 0.

Note: Although the construction shown in this example is not entirely consistent with the
definition provided above as our comparison function, F , is not continuous, this toy example
provides insight into the main idea of our pairing (µ, F ).

2.1.2 Thurstone’s Model & Luce’s Choice Axiom

The first model we present predates the field of pair-comparison itself by dating back
to 1927 from the field of mathematical psychology, Thurstone’s Law of Comparative
Judgement concerns an individual’s subjective preference between two stimuli, so-called
discriminal processes (Thurstone, 1927). In his original article outlining the principle, he
proposes that an individual’s perceived “excellence” of a stimulus is modelled by a random
variable Si on a psychological scale given by the form

Si = µi +Xi

for a constant µi and random variable Xi with mean 0.
In the context of comparing two stimuli, the model deals with two such variables then,

namely S1 and S2, and we have that stimulus i is preferred to stimulus j when Si > Sj .
Considering the quantity Dij = Si − Sj , we have that i is superior to j when Dij > 0.

In a strictly psychological setting, Thurstone assumes Xi to take a normal distribution,
and hence Si ∼ N(µi, σ

2
i ). As the difference between two normal distributions, Dij will

too follow a normal distribution (as a standard property of the normal distribution)

Dij ∼ N(µi − µj , σ
2
i + σ2

j )
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under Thurstone’s Law of Comparative Judgement. Hence we conclude the probability of
stimulus i winning out over j, pij = P(i ≻ j), to be

P(i ≻ j) = P(Dij > 0)

= Φ

 µi − µj√
σ2
i + σ2

j


To generalize this theory, we question what might happen if we were to select a different

distribution for our underlying discriminal process Xi rather than assuming normality. To
this end we introduce at this point Luce’s Choice Axiom (Luce, 1959), writing PS(R)
as the probability of an individual choosing an element belonging to a subset R ⊂ S of
a finite set of alternatives S, the axiom states for R ⊂ S ⊂ T : PT (R) = PS(R)PT (S) or
equivalently

PS(R) =
PT (R)

PT (S)

This is succinctly put by Luce in his reflection, The Choice Axiom After 20 Years (Luce,
1977), in the case where R consists of just one element, R = {a}

PS(a) =
ν(a)∑
b∈S ν(b)

for ν(a) (strictly positive) representing the response strength of a. Further simplifying to
the case where S comprises just two elements a and b, to parallel our work on Thurstone’s
model with two stimuli,

P(a ≻ b) = PS(a) =
ν(a)

ν(a) + ν(b)

=
1

1 + e−(ln(νa)−ln(νb))

writing νx = ν(x). Examining this closely, we note that this is nothing more than a
stochastic transitivity by composition model (F, µ), with

F (d) =
1

1 + e−d
, µ(x) = ln(νx)

where F (d) is the logistic function. This result shows that for random variables (µa+Ra, µb+
Rb) representing the response strength of elements (a, b) respectively – i.e. νx ∼ (µx +Rx)
for distribution Rx with mean 0 – the distribution of Dab = ln(µa +Ra)− ln(µb +Rb) will
have logistic CDF. In their work later cited by Luce & Suppes (Luce and Suppes, 1965),
Holman and Marley showed that this will occur when our random variables for response
strength have double exponential distribution, i.e.

P(µi +Ri ≤ x) = exp{− exp{α(µi − x)− β}}

Although as noted by Yellot (1977), this is not a necessary condition on the true nature of
the distribution of our response strength – that is, the double exponential does not uniquely
deduce a logistic form of (Ra −Rb) – for our purposes it will suffice as an illustration of
another variation of Thurstone’s model.

It is additionally worth noting that the quantitative similarities between the normal
and logistic distributions (shown in Figure 2.1) underline the striking similarities between
Thurstone’s original normal model, and Luce’s Choice Axiom.
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Figure 2.1: Graphical comparison of standard logistic function (yellow) against standard
normal CDF (purple)

2.1.3 Bradley-Terry Model

In its original paper (Bradley and Terry, 1952), the Bradley-Terry Model was proposed as
a means of determining the probabilities of winners in a pair-comparison taste-tests among
a set of roasted pork samples. For our purposes, however, we will instead refer to the more
bland example of ranking players in a competitive sport, as appropriated from Hunter (2004).

In a setting where n players are repeatedly matched and compete in a drawless game,
the BT model gives us the probability of player i beating player j as

P(i ≻ j) =
ρi

ρi + ρj

where {ρ1, ..., ρn} represent the true skill ratings of players 1 to n. Strikingly, this formula-
tion is identical to that of Luce’s Choice Axiom for two elements.

The fact that ratings are arbitrarily defined in this statement means that given a set of
real data (i.e. matches played between players), we may in fact use this model to calibrate
player ratings, where our estimate for ρ = {ρ1, ..., ρn} is given as the maximum likelihood
estimate of the model. In this sense, we are working backwards in calculating the ratings
that give us the highest probability of obtaining our data given the model. Since, under
the model, ρ will yield the same likelihood as λρ for λ ∈ R, going forward, we define ρ to
be normalized such that

∑n
i=1 ρi = 1.

To start, we write the log-likelihood function according to our master equation

ℓ(ρ) =
n∑

i=1

n∑
j=1

wij(ln ρi − ln (ρi + ρj)) (2.1)

where wij denotes the number of times player i has beaten j in our data set. Ford (1957)
tells us that existence of a maximizer for our likelihood function requires that for any
partition of the players into two sets (S1, S2), a player in S1 to have beaten a player in S2.
Hunter (2004) gives us the graph interpretation of this assumption for a directed graph of
n nodes with an edge representing a game between nodes in the direction of the winner as:
for all (i, j) there exists a path from node i to j. We will in the future refer to this as C1
(Condition 1 ).
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Given the nature of the process, wherein the more games that are played, the more accurate
we expect our vector of skill values to be, it is natural to consider an iterative process
in which we successively condition a vector of skill levels, ρ, to fit the data. Specifically,
starting with an initial guess, ρ(1), we repeatedly feed our vector into an iterative function,
M : Rn → Rn, such that ρ(k+1) = M(ρ(k)) and limk→∞ ρ(k) = limk→∞Mk(ρ(1)) = ρ̂,
where ρ̂ maximizes ℓ(ρ).

The MM Algorithm: In finding such an iterative function, we refer to an example in
Lange et al. (2000) on the use of surrogate functions to optimize the log-likelihood function.
Specifically, by employing so-called MM functions (minorizing/maximizing), the group
showed that

g(ρ|ρ(k)) ≤ ℓ(ρ) (equality ⇐⇒ ρ = ρ(k)) (2.2)

where

g(ρ|ρ(k)) =
∑
i,j

wij

(
ln(ρi) + ln

(
ρ
(k)
i + ρ

(k)
j

)
− ρi + ρj

ρ
(k)
i + ρ

(k)
j

+ 1

)
.

Condition (2.2) implies that g(ρ|ρ(k)) ≥ g(ρ(k)|ρ(k)) =⇒ ℓ(ρ) ≥ ℓ(ρ(k)), and thus any ρ
which maximizes g( · |ρ(k)) will serve to increase the likelihood of our ρ estimate. That is,
for ρ(k+1) found to maximize g( · |ρ(k)), the series (ℓ(ρ(m)))∞1 will be a monotone increasing
series.

By separating the components of our parameter vector, ρ, g( · |ρ(k)) can be maximized
simply by maximizing the function with respect to each of the components independently.
This is the advantage of working with g( · |ρ(k)) rather than ℓ(ρ) directly. Trivially, the
maximizer of our surrogate functions becomes

ρ
(k+1)
i =

∑
j ̸=iwij∑

j ̸=i(wij + wji)/(ρ
(k)
i + ρ

(k)
j )

(2.3)

where wij is the number of wins between player i against j, as stated previously (Lange
et al., 2000). Promisingly, this result is identical (after reworking) to the form proven by
Zermelo (as cited in Hunter (2004))

ρ
(k+1)
i = Wi

∑
j ̸=i

Nij

ρ
(k)
i + ρ

(k)
j

−1

for Nij the number of games between i and j, and Wi the total number of wins for player
i – i.e. Nij =

∑
j ̸=i(wij + wji), and Wi =

∑
j ̸=iwij .

Hence, we define the iterating function M(ρ(k)) according to (2.3). The properties of
this function in the context of an MM algorithm are explored at length in Hunter (2004).
Importantly, it is established that under relatively natural regularity conditions, it follows
that:

1. The MM algorithm defined by (2.3) will converge in the sense that ρ̂ = limk→∞ ρ(k)

exists

2. The limit ρ̂ will serve to maximize ℓ(ρ)

These properties show the MM algorithm as a valid means of computing our estimated skill
levels, ρ, for the BT model. Although we have chosen to explore this method specifically
in-depth, we note that this is in fact just one of many general purpose optimizers which
could be used to compute the MLE of our BT model likelihood function ℓ(ρ).
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2.1.4 Fitting the Tennis Data Set

In this section we apply the Bradley-terry model to real data from the 2017 ATP season
(DataHub.io, 2019), to get a sense of how the theory discussed up to this point fares
in practice. Computations and maximizations were done in R, performed using the
BradleyTerryScalable package (Kaye et al., 2017). For data sets satisfying C1, this pack-
age uses an MM algorithm to compute ρ̂ as the MLE of 2.1 – as described in the section prior.

The full R code can be found in the appendix.

Table 2.1: Top 10 player
rankings according to Bradley-
Terry model from ATP data.

ρ ID Surname

1 20.81 f324 Federer
2 17.35 n409 Nadal
3 10.43 d643 Djokovic
4 9.39 z355 Zverev
5 8.93 d875 Dimitrov
6 8.62 d683 del Potro
7 7.44 gb88 Goffin
8 7.34 w367 Wawrinka
9 6.91 n552 Nishikori

10 6.70 mc10 Murray

Figure 2.2: Balloon graph for the win probabilities
between top 10 players in BT rankings.

The table included displays the top-10-rated players from our data in accordance to the
BT model. This ranking follows the natural convention that the higher a player’s ρ, the
better we assume the player to be. Mathematically, this makes sense as, by the properties
discussed of comparison functions (specifically as a symmetry and strictly increasing
function) in the section on stochastic transitivity:

ρi > ρj =⇒ P(i ≻ j) > P(j ≻ i)

This translates to the obvious truth that player i’s rating is greater than player j’s if and
only if the probability of player i beating player j is greater than the probability of j
beating i.

With this in mind, the system appears to declare two clear leaders in Federer and
Nadal, with both players earning a rating more than 0.50 skill units above Djokovic in 3rd.
Further down the table it appears to become more competitive, with the last four players
all being ranked within 0.11 units of each other.

Looking at 2.2 we see the other interpretation of the BT model, applying our skill
ratings of the top 10 players to construct a balloon graph displaying win-probabilities in
head-to-heads. A clear gradient moving from left-to-right and bottom-to-top is the most
prominent trend in this graph. This is explained by the ordering of the players in the
matrix, with players put in descending rank from top-to-bottom and left-to-right. By a
similar line of reasoning as expressed above we see that this trend is in fact what we would
expect, with the main diagonal straddling the 50% mark.

2.1.5 Constructing Confidence Interval in Bradley-Terry Model

As a quantitative measurement of the performance of players in a sport, the BT model
gives us a framework for conducting hypothesis tests on player skill level, or – as we will
see later – the effects of covariates on player performance. The methodology investigated
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in this section, in the context of competitve sport, finds natural application in the realms
of sport betting, sports analysts, as well as tournament organizers by allowing us to better
understand the factors and conditions that affect player performance. More generally,
however, these techniques could be applied to any system of paired comparisons in a host
of different disciplines.

As a maximum likelihood estimator (MLE), we note that our skill parameter, ρ, will
exhibit key properties associated with MLEs, which we will exploit – namely the asymp-
totic normality of MLEs – to construct confidence intervals for relevant hypothesis tests.
Mathematically, this is stated for the one-dimensional case in the following theorem Vaart
(1998)

Theorem 2.1: For m i.i.d. random variables {X1, X2, ..., Xm}, with p.d.f. f(x|θ) and
θ ∈ Θ, under certain regularity conditions, given a consistent sequence of MLEs, (θ̂m), we
have that √

n(θ̂m − θ)→d N(0, If (θ)
−1)

where If (θ) is the Fisher Information of sample size one

If (θ) = −Eθ

[
∂2

∂θ2
ln fθ(X)

]
.

Theorem 2.1 tells us our MLE θ̂ will be normally distributed about our true parameter
θ as m→∞.

θ̂ ∼ N(θ, (n · If (θ))−1)

This is generalized for the non-i.i.d. case (Y = {Y1, Y2, ..., Ym}), with multidimensional
parameter θ ∈ Rn, as

θ̂ ∼ Nn(θ, IY (θ)−1), for IY (θ) = −Eθ

[
∇2ℓ(θ)

]
(2.4)

where ∇2ℓ(θ) is the Hessian matrix of ℓ(θ) = ln fθ(Y ), and Nn(µ,Σ) is the n-dimensional
multivariate normal distribution. (Zhou, 2016)

This form is naturally adapted in the case of our BT model, where we will be esti-
mating n parameters, representing the skill levels of our n players. Hence we attempt to
estimate ρ ∈ Rn, where ρi ∈ ρ is the BT rating of our ith player, as our MLE for the system.

We look to apply this theory in the case of a hypothesis test in the next section.

2.1.6 Investigating Momentum in Tennis

The BT model serves as a simple yet comprehensive theoretical framework for us to model
competitive sports played between two opponents, however this simplicity comes at the
cost of reducing the depth at which we critically consider the sport, through a number
of modelling assumptions. Specifically, the model states that player skill will follow a
constant random distribution (the double exponential in this case). In this final section we
attempt to improve upon the model by encoding for another parameter, momentum, by
investigating real data from professional tennis matches and performing an appropriate
hypothesis test.

We define momentum in the context of a set consisting of multiple games (most
commonly a 3-game set). In such a set, played between player i and j, when i wins the
first game, it has been posited that he/she will be experiencing momentum going into the
next game, which will subsequently affect his/her performance. We model this simply by
only considering the game immediately prior: momentum will only affect the winner of
the previous game, regardless of the outcome of all games before. Additionally, we assume
that momentum affects all players in the same way.

11



To do this we introduce a new parameter λ to the BT model, and restate the master
equation in exponential form

pij =
exp{γi + Iiλ}

exp{γi + Iiλ}+ exp{γj + Ijλ}
, for Ix =

{
1 player x won last game

0 player x lost last game
(2.5)

From this, eλ becomes the momentum coefficient acting on a player’s base skill rating
ρi = eγi . We will estimate these parameters (γ, λ) by looking at the likelihood function for
a set of real data, observed in professional tennis matches, and estimating the MLE for our
parameters using an array of computational methods.

Hyptheses: With respect to our master equation 2.5, we define hypotheses for our
statistical test as

H0 : λ = 0

H1 : λ ̸= 0

where λ > 0 means winning the previous game improves a player’s performance, while
λ < 0 corresponds to a drop in strength.

Methodology: To evaluate the likelihood function of our modified BT model given a set
of M matches, we must first partition our data set into three categories:

S1 = {(i, j)|i ≻ j, Ii = 1 & Ij = 0}
S2 = {(i, j)|i ≻ j, Ii = 0 & Ij = 1}
S3 = {(i, j)|i ≻ j, Ii = Ij = 0}

These sets are equivalent to separating the matches where the winner won their past game
and the loser didn’t (S1), the ones where the winner lost their past game and the loser won
(S2), and the remainder where represent the first game of the set, where neither player has
momentum (S3). With this we construct our log-likelihood function ℓ(γ, λ|M):

ℓ(γ, λ|M) =
∑

(i,j)∈S1

ln

(
1

1 + eγj−(γi+λ)

)
+
∑

(i,j)∈S2

ln

(
1

1 + e(γj+λ)−γi

)
+
∑

(i,j)∈S3

ln

(
1

1 + eγj−γi

)

Last, using our MLE, θ̂, we perform our test using the construction outlined above (in
section 2.1.5), to evaluate the statistical significance of our result.

Data & Considerations: To test our hypothesis we use data from the 2017 tennis season,
looking at matches between the top 8 players, according to the ATP World Rankings.
Importantly, our data must fulfil Condition 2.1.3, and hence we look only at the top 8
players to ensure a competitive graph.

Results: Using R process our data (see appendix for code), we started by partitioning
our matches into the three categories described above. Expressing these sets as matrices
(the (i, j) element of each corresponds to the number of times player i beat player j
given the appropriate momentum state) we defined our log-likelihood function ℓ(θ|M) for
θ = (γ1, γ2, ..., γ10, λ) ∈ R11 as a function in R.

Next, by minimizing the negative of this function, using the nlm function, we were able
to obtain the MLE of this parameter vector, θ̂, and find corresponding estimates for our
skill parameters γ̂ = (γ1, ..., γ10) and momentum coefficient λ̂ (shown in table 2.2). At
this point we wish to establish whether our estimated momentum is in fact a statistically
significant result. To do this, we will evaluate our result on an 80% (two-sided) confidence
interval.
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Table 2.2: Maximum likelihood estimates (θ̂) for player skill parameters and momentum
parameter. Calculated using R optim function with gr=‘BFGS’.

γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6 γ̂7 γ̂1 λ̂

1.012 1.967 0.214 -0.532 -0.538 -1.602 0.247 -0.286 -0.218

Since we have shown that
θ̂ ∼ N11(θ, IM (θ)−1)

where IM (θ) is defined in 2.4 as an (11× 11) Hessian matrix, we have that the marginal
distribution of our estimated momentum coefficient λ̂ will follow a normal distribution
with mean λ and variance equal to the corresponding in the diagonal of our Hessian matrix
(the (11, 11)th element by our construction). That is,

λ̂ ∼ N(λ,
∂2

∂θ2
ℓ(γ, λ))

We estimate this as using our estimates for the MLE, as seen in Zhou (2016) to obtain a
functional approximation for our variance

∂2

∂θ2
ℓ(γ, λ) = −

∑
(i,j)∈S1

 exp
{
λ̂+ γ̂i + γ̂j

}
(exp

{
λ̂+ γ̂i

}
+ exp{γ̂j})2

+
∑

(i,j)∈S2

 exp
{
λ̂+ γ̂i + γ̂j

}
(exp

{
λ̂+ γ̂j

}
+ exp{γ̂i})2


Calculating this in R yields an estimate on variance of s2 = 2.74. Under our asymptotic
distribution, this means that our test statistic for our momentum parameter carries a
p-value of p = 2 · (0.4312471) for our two-sided hypothesis test. This figure is well above
our α = 0.2 significance level, and so we conclude that given our data, we are not able to
reject the null hypothesis.

2.2 Elo Rating

We introduce our next rating system, the Elo rating as developed by Arpad Elo. The
rating system has been used in the context of chess tournament rankings since its first use
in the United States Chess Federation (USCF) in 1960, although its conception dates back
earlier to Elo’s research in the 1950’s (Glickman and Jones, 1999). Unlike the BT-Model,
this system assigns each player an explicit rating value to represent their skill. This can
be used similarly to BT in order to predict game outcomes and we will discuss how the
system does this as well as how this changes after game outcomes.

2.2.1 Motivation

Under this system, each player is given an individual rating between 0 and 3000 which
evaluates their strength. The statement of an explicit number for each player allows players
to be assigned matches against others of similar strength. Additionally, the rating allows
for a definitive ranking of all players participating in a particular event.

We will see that although sharing key similarities with the previously discussed BT
model, the Elo model arises as a consequence of accounting for the possibility of ties in
matches (an important distinction for chess matches). Fundamentally, the Elo system
achieves this by considering expected score rather than win probabilities, as evaluated by
the BT model.
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2.2.2 Winning Probabilities

In a match between players i and j, we have that Ei +Ej = 1 for Ek ∈ [0, 1] for k = i, j as
the expected points of i, where we award the points

1, player i wins
1
2 , player i draws

0, player i loses

Defining the random variable Xj as the number of points awarded to player i in a
match against j, we may write Ei as the expectation of Xj , E[Xj ], and hence

Ei = 1P(i ≻ j) +
1

2
P(i ∼ j) + 0P(i ≺ j)

= pij +
1

2
P(i ∼ j)

for pij the probability of i beating j, and therefore we see that Ei becomes precisely pij
when we disallow draws.

As was the case in the BT model, our expected score will depend on the underlying
skill levels of player i and j, (Ri, Rj) – our function will indeed depend on the difference
of these two quantities to be more precise. We may derive the Elo system by assuming a
rating difference of 400 should indicate that player i’s expected score is 10 times that of j
(Berg, 2020). Similarly, a rating difference of 800 indicates player i’s expected score is 100
times that of j and so on. This is written as

Ei = 10(Ri−Rj)/400Ej =⇒ Ei = 10(Ri−Rj)/400 − 10(Ri−Rj)/400Ei

=⇒ (1 + 10(Ri−Rj)/400)Ei = 10(Ri−Rj)/400

=⇒ Ei =
10(Ri−Rj)/400

1 + 10(Ri−Rj)/400

Figure 2.3: Normal p.d.f (green)
compared to Gumbel’s distribution
p.d.f. (purple)

Rearranging, we obtain Elo’s master equation

Ei =
10Ri/400

10Ri/400 + 10Rj/400

which becomes the statement of the Bradley-Terry
master equation for ρi = f(Ri) = 10Ri/400. With
this in mind, it is important to stress that despite
this core similarity, the two models follow fundamen-
tally different modelling assumptions regarding the
distribution of a player’s skill level in a given match.
Whereas we previously established the BT model –
via Luce’s Choice Axiom – models a player’s skill
rating as a double exponential (also referred to as
a Gumbel extreme value distribution), Elo’s model
assumes player rating to be normally distributed.
In this regard, the Elo model is comparable to the
Thurstonian model discussed in the section prior
(shown in 2.3). (Glickman, 1995a)

2.2.3 Updating Ratings

The second part of the Elo model concerns generating and updating the estimated skill
values in the model Ri. As described by Glickman and Jones (1999), under its original

14



design, scores for established players are updated following a tournament based on overall
performance, with new players (players with less than 20 officially rated games) given a
provisional rating.

The performance rating formula is the first equation of the Elo system. It follows
immediately from the normal probability curve:

RP = RC +DP

where RP is the performance rating, RC is the average competition rating and DP is to be
read as the difference based on the percentage score P, which is obtained from the graph
or table.This equation is used to determine ratings on a periodic basis. Also it may be
used to determine provisional ratings in systems not on a periodic basis, such as that of
the USCF.

Provisional ratings for new players are updated at the end of tournaments, and consider
the player’s complete career performance. Specifically,

Rnew = R̄opp + 400

(
W − L

N

)
where R̄opp is the average rating of opponents played, W number of wins, L loses, and N
total games. Unfortunately this system has some glaring flaws, most prominently illustrated
in the case where winning a match can result in players losing rating, such as the case
contrived by Glickman where a new player wins, draws, and loses against opponents rated
1400, 1500, and 1600 in one tournament, generating a provisional rating of 1500. If next he
were to defeat a player of rating 700, his updated provisional rating would drop to 1400.

In the case of an established player, with a score generated based on 20 or more
tournament games, rating is updated following a tournament by the scaled difference in
expected and actual performance.

Rnew = Rold +K(S − Sexp)

for S and Sexp representing the number of points scored and expected points at the start
of the tournament, based on their opponents played. K is referred to as an attenuation
factor, and can be varied based on significance of the tournament and number of games
played. In this setting, it is the maximum number of rating points a player can earn or lose
from a match. In some sense, it adjusts the sensitivity of the rankings, whereby a large K
may result in drastic shifts in placings and a small K may lead to inconsequential changes.
A short discussion on our attempts at deriving an appropriate K-factor is discussed below.

2.2.4 Finding an appropriate K-factor

Under the Elo rating scheme, different contexts respond better to different K-values. Thus,
one which encapsulates the rating trends found in the tennis scene is presumably able to
provide better predictions for a player’s skill.

One method for estimating the best K is by maximising the total log-likelihood of the
matches under its Elo fit. However, this is likely to over-fit and consequently produce poor
performance in unseen data. A similar approach is to instead maximise the log-likelihood
resulting from a cross-validation procedure. This aims to find a good estimate for K while
accounting for unseen data. This method is discussed in more detail in the next chapter.
In doing so, we yielded a value of K̂ = 31.41. We use this value later for the actual fit with
the tennis data set.

An extension to this static version of K is one which takes into account other various
factors such as margin of victory, significance of tournament, and the uncertainty in a
player’s rating as explored further in the Glicko section. An example is the expression
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Glickman and Doan (2015) described as part of the standard rating procedures done by
the US chess federation, as given by

K =
800

N ′ +m

where N ′ refers to the effective number of games played and m is the number of games
played in the tournament by the player in question. The idea being we become more certain
about a player’s rating, the more games they have played. This concept is presented in a
different manner in the Glicko section. Although, a similar yet simpler function for K by
Kovalchik (2020), as used by the weighted Elo R package (Candila, 2021), is given by

K =
250

(N + 5)0.4

where N is the number of matches won by the player up until that point in time. This
convention is explored along with the static K in a tennis data set.

2.2.5 Fitting the Tennis Data Set

The following tables 2.3 and 2.4 tally the rankings derived from the static and dynamic K
values as described previously.

Table 2.3: Players with the highest
fitted static Elo ratings (K = 31.41)
from the ATP data set.

Player Rating

1 Federer 2597.79
2 Nadal 2544.13
3 Dimitrov 2486.29
4 del Potro 2479.46
5 Goffin 2443.56
6 Djokovic 2439.21
7 Zverev 2397.08
8 Dzumhur 2390.55
9 Sock 2378.39

10 Tsitsipas 2377.07

Table 2.4: Players with the highest
fitted dynamic Elo ratings from the
ATP data set.

Player Rating

1 Federer 2783.52
2 Krajinovic 2690.50
3 Nadal 2668.01
4 Dimitrov 2651.14
5 del Potro 2640.09
6 Tsitsipas 2565.36
7 Djokovic 2560.05
8 Goffin 2557.65
9 Dzumhur 2547.58

10 Benneteau 2537.88

Figure 2.4: Probability of winning while rating
difference varies from the ATP data set.

A subtle difference can be found in
the two rankings. Notably, a player of
Krajinovic’s status is ranked as high in
the dynamic variant of the rating scheme.
In the match data, he has only lost once
of which is in the later rating periods.
The dynamic K shrinks as the number
of games played increases, so this obser-
vation is inline with its motivations of
being more certain of a players skill over
time. However, this model far underesti-
mates the skill improvements of players
over long periods of time.

A slightly more sensitive system is
the static Elo rating scheme employed.
A plot of the probability of winning against the rating difference between players is shown
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in Figure 2.4. As K was determined to maximise likelihood, this value for K is supposed to
have as little residuals from the theoretical logistic curve shown as possible whilst avoiding
the pitfall of over-fitting. In the same graph, there appears what could be deemed as
outliers, effectively skewing the value for our best estimate for K. Nevertheless, a trend
line proportional to a logistic curve is found, and so players’ ratings could be regarded as
having almost fully converged according to their true inherent strength. This, of course, is
within a certain time epoch – a year to be specific.

2.3 Glicko Rating

We continue by discussing the Glicko rating system which was proposed by Glickman
(1995b) and extends upon the Elo rating system by considering the reliability of a player’s
rating. The system adopts a Bayesian approximation method to model ratings as a
normal distribution with each player having an individual mean rating and rating deviation
Glickman (1999). In particular, this new rating deviation parameter is also assigned to
each player and allows us to assess how reliable a rating is and how changes to it and
other player’s ratings should be adjusted to accommodate this new parameter. To extend
further, we will also discuss the Glicko-2 rating system which considers the volatility in a
player’s performance when updating their ratings. These systems can then be applied to
historical data to analyse their effectiveness in predicting results.

2.3.1 Motivation

Glickman (1995b) proposed the following problem - suppose two players, i and j, with
identical ratings under the Elo model were to play against one another with player i beating
player j. As a result of the Elo rating system, the rating of i increases by an identical
amount to the decrease in j’s rating. However, this relies on the underlying assumption
that the match’s outcome gives us equal information on both player’s ability - something
which is often not the case.

Suppose that both players have played a similar amount of games but player i has
just resumed participating in games after a year long absence whilst player j has been
consistently participating. In that year long absence, player i’s rating has not changed
and so would be a less accurate evaluation of their true rating whilst j’s rating should be
far more reliable due to more recent evidence. The proposed solution in such cases would
be to have player i’s rating increase by a larger amount than j’s decrease. This reflects
how the game’s outcome gives more evidence to player i’s ability. Their rating is already
inaccurate so winning against j who has an accurate rating suggests i’s should be much
higher. Conversely, player j’s rating is already quite accurate and so losing to someone
with an inaccurate rating may not say much about j’s ability,

To account for this, the Glicko model includes a standard deviation parameter associated
with a player’s rating, referred to as a rating deviation, which we denote by σ2. Higher
rating deviation suggests greater uncertainty in a rating and a lower deviation suggests
greater reliability in a rating. Adhering to the previously mentioned reasoning, the rating
deviation will also passively increase as a player remains inactive, as we become less certain
in their ability if they don’t participate.

2.3.2 Updating Ratings and Rating Deviations

Under this model, the player’s true rating, θ is assumed to follow a normal distribution.
The mean of this distribution will be the rating the player is normally assigned, µ, and the
variance will be the player’s rating deviation, σ2. Hence θ ∼ N(µ, σ2) Glickman (1999). A
95% confidence interval can then be constructed for θ, given as

(µ− 2σ, µ+ 2σ)
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Essentially, if a player has rating µ and rating deviation σ2, we are not saying that µ is
their true rating. It means that if we do this process infinitely many times, 95% of them
will lie between µ− 2σ and µ+ 2σ.

If a player is unrated, we assign them an initial rating µ0 = 2200 as this is the default
for the R package we use. We also need to assign them an initial rating deviation σ2

0. This
value is typically 300 but can also be inferred from the data set to which the model is
being applied Glickman (1995b).

Rating Periods

Under the Glicko model rather than updating a player’s true rating, we update the
distribution of their true rating. This is done by updating a player’s µ and σ2 values based
on the outcome of games. To begin we must first define a rating period. All games within
this rating period are assumed to happen simultaneously and we update µ and σ2 at the
end of each period.

The decision of the rating period’s length is usually left up to the discretion of those
administering the event in which player’s are being rated. Glickman (1999), however,
suggested a length period where each player participates in around 5-10 games each. This
criteria can be addressed when fitting the tennis match data to the model.

After an Outcome of a Game

We proceed to derive expressions for µ′ and σ′2, the updated rating and rating deviation for
a player at then end of a rating period. The following derivation is adapted from Glickman
(1999).

Let sjk, 1 < j < m, 1 < k < nj , be the kth outcome of the match between the player
and opponent j (as the player may play against the same opponent multiple times), with an
outcome being either 1, 1

2 , or 0 for a win, draw and loss. Denote the collection of all these
outcomes as s. We need to find a new distribution for θ based on the distributions of all the
opponents’ rating distributions, which we denote as θ1 ∼ N(µ1, σ

2
1), ..., θm ∼ N(µm, σ2

m).
Firstly, we consider the posterior marginal density of θ given the outcomes

f(θ|s) =
∫

...

∫
f(θ1, ..., θm|s)f(θ|θ1, ..., θm, s) dθ1... dθm (2.6)

The first term in the integral is the posterior marginal density of θ1, ..., θm given the
outcomes of the matches. We approximate this using the product of the prior marginal
densities as

f(θ1, ..., θm|s) ≈ φ(θ1|µ1, σ
2
1)...φ(θm|µm, σ2

m)

where φ(x) is the Normal density function. By Bayes’ theorem we also have the following
expression for the second term in (2.6)

f(θ|θ1, ..., θm, s) ∝ φ(θ|µ, σ2)L(θ, θ1, ..., θm|s)

Using these expressions, (2.6) becomes

f(θ|s) ∝
∫

...

∫
L(θ, θ1, ..., θm|s)φ(θ|µ, σ2)φ(θ1|µ1, σ

2
1)...φ(θm|µm, σ2

m) dθ1... dθm

= φ(θ|µ, σ2)

∫
...

∫
L(θ, θ1, ..., θm|s)φ(θ1|µ1, σ

2
1)...φ(θm|µm, σ2

m) dθ1... dθm

∝
m∏
j=1

∫ nj∏
k=1

(10(θ−θj)/400)sjk

1 + 10(θ−θj)/400
φ(θj |µj , σ

2
j ) dθj (2.7)
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The last line comes from considering the terms in L(θ, θ1, ..., θm|s) which are the outcomes
of all the games between players. This is the product of the outcomes of all the games
played during the rating period but we only require the terms depending on θ. Hence, all
the other terms which correspond to games between the other players can be considered
constants and taken out the integral. We now proceed to find the maximum likelihood

L(θ|s) ≈
m∏
j=1

nj∏
k=1

∫
(10(θ−θj)/400)sjk

1 + 10(θ−θj)/400
φ(θj |µj , σ

2
j ) dθj (2.8)

where we move the product out of the integral in (2.7) by assuming that an opponent can
play at different independent strengths across several games. We approximate further as
the term in the integral in (2.8) is a Logistic cumulative function which we approximate
as a Normal cumulative function with same mean and variance and then converting back
after computing the integral∫

(10(θ−θj)/400)sjk

1 + 10(θ−θj)/400
φ(θj |µj , σ

2
j ) dθj ≈

(10g(σ
2
j )(θ−µj)/400)sjk

1 + 10g(σ
2
j )(θ−µj)/400

(2.9)

where

g(σ2) =
1√

1 + 3q2σ2/π2
(2.10)

and

q =
log(10)

400
(2.11)

Hence, by substituting (2.9) into (2.8) the likelihood can be written as

L(θ|s) =
m∏
j=1

nj∏
k=1

(10g(σ
2
j )(θ−µj)/400)sjk

1 + 10g(σ
2
j )(θ−µj)/400

=⇒ log(L(θ|s)) =
m∑
j=1

nj∑
k=1

[ q g(σ2
j sjk(θ − µj)− log(1 + 10g(σ

2
j )(θ−µj)/400) ]

=⇒ ∂ log(L(θ|s))
∂θ

= q
m∑
j=1

nj∑
k=1

g(σ2
j )(sjk −

1

1 + 10g(σ
2
j )(θ−µj)/400

) (2.12)

Define

E(s|θ, µj , σ
2
j ) =

1

1 + 10−g(σ2
j )(θ−µj)/400

(2.13)

which is the expected outcome of a match between the player and opponent j. Since we
defined sjk to take values 1, 1

2 , or 0, this result can also be interpreted as the probability
that the player wins against j.

From (2.12) we now know that for a maximum likelihood we require

m∑
j=1

nj∑
k=1

g(σ2
j )(sjk − E(s|θ̂, µj , σ

2
j )) = 0 (2.14)

and when substituting θ̂ in the second partial derivative we have

∂2 log(L(θ|s))
∂2θ

∣∣∣∣∣
θ=θ̂

= −q2
m∑
j=1

nj∑
k=1

g(σ2
j )

2E(s|θ̂, µj , σ
2
j )(1− E(s|θ̂, µj , σ

2
j ))

= −q2
m∑
j=1

njg(σ
2
j )

2E(s|θ̂, µj , σ
2
j )(1− E(s|θ̂, µj , σ

2
j )) (2.15)

< 0
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verifying the maximum. We then approximate the likelihood’s density function with a
Normal density function with mean θ̂ and variance δ2. We approximate δ2 by substituting
µ in place of θ̂ in (2.15) and taking the reciprocal

δ2 ≈

[
q2

m∑
j=1

njg(σ
2
j )

2E(s|µ, µj , σ
2
j )(1− E(s|µ, µj , σ

2
j ))

]−1

We can now approximate the posterior distribution of θ as proportional to the product
of two distributions we already know

f(θ|s) ∝ φ(θ|µ, σ2)φ(θ|θ̂, δ2)

We arrive at expressions for the mean and variance of the posterior distribution of θ.
In other words, the updated rating and ratings deviation at the end of the rating period

σ′2 =

(
1

σ2
+

1

δ2

)−1

(2.16)

µ′ = σ′2
(

µ

σ2
+

θ̂

δ2

)
= µ+

1/δ2

1/σ2 + 1/δ2
(θ̂ − µ) (2.17)

Above is the final needed expression for σ′2 but the expression for µ′ still has a θ̂ term.
To fix this, we approximate (θ̂ − µ) using the following method. First define

h(θ) =
m∑
j=1

nj∑
k=1

g(σ2
j )

1 + 10−g(σ2
j )(θ−µj)/400

(2.18)

where g(σ2
j ) is defined in (2.10). Substituting for θ̂ and using (2.14) we have

h(θ̂) =
m∑
j=1

nj∑
k=1

g(σ2
j )sjk (2.19)

Expanding this using the Taylor series for h(θ) around µ gives

h(θ̂) ≈ h(µ) + (θ̂ − µ)h′(µ) (2.20)

where

h′(µ) = q
m∑
j=1

nj∑
k=1

g(σ2
j )

2E(s|µ, µj , σ
2
j )(1− E(s|µ, µj , σ

2
j )) (2.21)

with q defined in (2.11). Using (2.20) we now have

(θ̂ − µ) ≈ h(θ̂)− h(µ)

h′(µ)
(2.22)

Substituting this back into (2.17) and using expressions (2.18), (2.19) and (2.21) we
can derive the final expression for µ′

µ′ ≈ µ+
1/δ2

1/σ2 + 1/δ2
h(θ̂)− h(µ)

h′(µ)

= µ+
q

1/σ2 + 1/δ2
(h(θ̂)− h(µ))

= µ+
q

1/σ2 + 1/δ2

m∑
j=1

nj∑
k=1

g(σ2
j )(sjk − E(s|µ, µj , σ

2
j )) (2.23)

Hence, after each rating period, we apply expressions (2.16) and (2.23) to each player to
update their rating and rating deviation.
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After Time Passes

Now suppose that a player does not participate in any matches during the rating period.
Their, rating will remain unchanged while their rating deviation will increase. Glickman
(1999) showed that after t rating periods have passed, the new rating has the following
distribution

θ ∼ N(µ, σ2 + ν2t)

where ν2 is a quantity which represents the increase in uncertainty per unit of time that
passes without the player participating. The value for ν2 will need to be inferred from the
data when we come to apply the rating system.

2.3.3 Glicko-2 Ratings

The Glicko-2 is another rating system which extends the Glicko rating further by intro-
ducing an additional rating volatility parameter (Glickman, 2012). Denoted by ρ, this
parameter is assigned to each player and governs the consistency in their performance. A
player with a high volatility rating may demonstrate erratic performance, playing very well
in a few games and poorly in others. Conversely, a player with a low volatility rating will
demonstrate consistent performance across games.

Consider the case where two players, i and j play a match, with i winning. Suppose
however, that player i has a much lower rating and much higher volatility than player j. In
such cases, player i’s rating would increase by a smaller amount under the Glicko-2 system
compared to Glicko-1. Likewise, player j’s rating would decrease by a smaller amount too.
This conveys the principle of the volatility parameter as player i is known to have more
erratic performances, so the match result is less indicative of their performance compared
to a consisten player like j.

Updating Ratings, Rating Deviations and Volatility

The Glicko-2 system also requires defined rating periods, an initial rating for unrated
players, and quantities ν2 and σ2

0 which we all initialise similarly to Glicko-1. An additional
parameter, τ , known as the system constant must also be set. The system constant limits
changes in a player’s volatility rating. This prevents drastic changes in volatility which in
turn result in large rating changes. In essence, this will limit the effect an erratic player’s
performance has in drastically changing ratings.

We require an expression for the updated rating, rating deviation and volatility for a
player, µ′, σ′2 and ρ′. The following procedure is adapted from Glickman (2012).

Let the outcome of the games, sjk, be similarly defined as in Glicko-1. The Glicko-2
rating system operates under a slightly differently scale to Glicko-1. Hence, the initial rating
and rating deviation of a player is converted onto the new scale before the calculations
begin. We denote the rating and rating deviation under the new scale as

µ̃ =
µ− 1500

173.7178

σ̃ =
σ

173.7178

We first obtain several quantities required to obtain ρ′. The first is the quantity v, an
estimate to the variance of the player’s rating based on the outcomes. This is given by

v =

[
m∑
j=1

njg(σ̃j
2)2E(s|µ̃, µ̃j , σ̃

2
j )(1− E(s|µ̃, µ̃j , σ̃

2
j ))

]−1
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where

g(σ̃2) =
1√

1 + 3σ̃2/π2

E(s|µ̃, µ̃j , σ̃
2
j ) =

1

1 + exp
(
−g(σ̃2

j )(µ̃− µ̃j)/400
) (2.24)

and 2.24 is the Glicko-2 equivalent expression for the expected outcome of a game. We
next obtain an expression for ∆, which is an estimate for the improvement of a player’s
rating based on the game outcomes given by

∆ = v
m∑
j=1

nj∑
k=1

g(σ̃2
j )(sjk − E(s|µ̃, µ̃j , σ̃

2
j )

To obtain ρ′ we define

f(x) =
ex(∆2 − σ̃2 − v − ex)

2(σ̃2 + v + ex)2
−

(x− log
(
ρ2
)
)

τ2

We require the root of the above function. This is done numerically via the Illinois algorithm
which is a version of the regula falsi method for obtaining an unknown. Once we obtain
the approximate solution, A, we define the updated volatility as

ρ′ = eA/2 (2.25)

We may now obtain an expression for a new prior rating deviation

σ̃∗ =
√
σ̃2 + ρ′2

Finally we arrive at expressions for the updated rating and rating deviation

σ̃′ =
1√

1/σ̃ ∗2 +1/v
(2.26)

µ̃′ = µ̃+ σ̃′2
m∑
j=1

nj∑
k=1

g(σ̃2
j )(sjk − E(s|µ̃, µ̃j , σ̃

2
j ) (2.27)

It remains to convert these back to the Glicko-1 scale

µ′ = 173.7178µ̃′ + 1500

σ′ = 173.7178σ̃′

Hence, after each rating period, we apply expressions (2.26), (2.27) and (2.25) to each
player to update their rating, rating deviation volatility. If the player does not participate
in the rating period, we update their rating deviation using the same ν2 parameter for
Glicko-1.

2.3.4 Fitting the Tennis Data Set

To come up with a suitable fit for the model, a reasonable rating period must be set. From
the match data, each tournament provides an average of two games played by each player.
Hence, to meet the rule of thumb: 5-10 games per player as suggested by Glickman (1995b),
we set each rating period to begin every four tournaments.

In a similar manner, appropriate values for σ0, the initial rating deviation of an unrated
player, and ν, the parameter corresponding to the increase in rating deviation per unit time,
are often estimated to get better fits for the model. Cross-validatory methods are mainly
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able to do so while limiting the effects of over-fitting. Glickman (1999) suggests a simple
algorithm which calculates an approximation of the full-likelihood – the total predictive
discrepancy of matches – and employs an optimiser in the form of the Nelder-Mead simplex
algorithm to minimise such. An expression for a component of this discrepancy is given by
the negative binomial log-likelihood

dij = −sij log(pij)− (1− sij) log(1− pij) (2.28)

where sij is the outcome of the game played between i and j and pij is the modelled
probability that i beats j. An approximation for pij is given by

pij =
1

1 + 10−g(σ2
i +σ2

j )(µi−µj)/400
(2.29)

At each rating period, 2.28 is calculated and summed for all the relevant matches and the
ratings are then updated. This process is continued until a value for the total predictive
discrepancy is derived.

In doing so, with a max rating deviation set to 350, we yielded: σ̂0 = 350 and
ν̂ = 254.24. In comparison with the default parameters suggested by the package: σ0 = 300
and ν = 15, the cross-validation results were unsatisfactory. A point of mention is that
this approximation compromises variance for bias. The relatively small sample size may
have caused a significantly large variance for the estimates. Thus, we instead attempt to
minimize the total log-likelihood resulting from a 10-fold cross-validation experiment, a
method which we explain in further detail in the next chapter.

Subsequently, we acquire the MLEs: σ̂0 = 146.04 and ν̂ = 13.33. From inspection, these
seem to be more in line with estimates from tennis data sets in practice (Glickman, 1999).
Though, it is worth mentioning that these estimates are likely to be biased downwards, i.e.
underestimating the true parameters. A heat map for the average log-likelihood across
each rotation of cross-validation is shown in Figure 2.5, depicting the best combination of
parameters as the lightest regions.

The same process is repeated to obtain the equivalent values for the Glicko-2 system.
In addition, however, we also vary the value of τ to obtain the best system constant. We
acquire the MLEs: hatσ0 = 151.27 and ρ̂ = 0..07. For τ̂ we observed that the MLE was
always the minimum value we allowed τ to take and would go as low as 0. This can be
viewed as the system trying to minimise the presence of volatility as much as possible.
To compensate we decide to set τ̂ = 0.3 the lower value of the range Glickman (2012)
suggested.

Using these estimates for the parameters, we fit the Glicko and Glicko-2 model onto
the match data, under the assumption of a four-tournament rating period. Each player is
thus ranked as shown in Table 2.5 and 2.6 along with their appropriate parameters. We
note that the final deviation values are also influenced by how players schedule tournament
participation. For example, having gaps in participation between rating periods, especially
the later ones, could lead to high final deviations.
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Table 2.6: Top ten players as per the Glicko2 scheme with initial rating of 2200, starting
deviation and volatility of 151.27 and 0.07, and volatility increase per unit time 0.3.

Player Rating Deviation Volatility

1 Federer 2595.28 60.41 0.07
2 Nadal 2526.23 54.08 0.07
3 Djokovic 2440.06 62.09 0.07
4 del Potro 2420.05 53.20 0.07
5 Dimitrov 2418.67 50.75 0.07
6 Zverev 2403.57 50.85 0.07
7 Goffin 2390.75 48.71 0.07
8 Krajinovic 2364.16 83.81 0.08
9 Agut 2357.28 52.36 0.07

10 Cilic 2357.27 52.01 0.07

Table 2.5: Top ten players as per the
Glicko scheme with initial rating of 2200,
starting deviation of 146.04 and deviation
increase per unit time 13.33.

Player Rating Deviation

1 Federer 2591.10 60.23
2 Nadal 2523.50 54.23
3 Djokovic 2437.06 61.84
4 del Potro 2418.45 53.21
5 Dimitrov 2417.55 50.85
6 Zverev 2401.73 51.03
7 Goffin 2389.55 48.84
8 Krajinovic 2361.26 83.02
9 Agut 2356.27 52.51
10 Cilic 2356.27 52.16

Figure 2.5: Average log-likelihood heat map
of the Glicko fit as the initial rating deviation
and deviation increase per time are varied.

2.4 The Fickle Fan Rating Model

We round-off our work in this chapter by proposing the use of a stochastic model, the Fickle
Fan Rating (FFR) model, to produce a ranking from a paired comparison experiment,
using Markov Chains. Note that this is a model derived by us by combining existing ideas
and our imagination. The stochastic matrix, consisting of the transition probabilities,
is configured to reflect the observed preferences between stimuli. Then, obtaining the
convergent-state probability vector yields values that can be used to make judgements
between any two stimuli. Its advantages and trade-offs are discussed on top of relevant
results of Markov chains. In the end, we run a simulation for the top 10 players under the
ATP data set and discuss our findings.

2.4.1 Markov Chains

A Markov chain is a stochastic process that describes a system of states and a sequence of
random variables. These variables represent possible jumps between each state at every
step of time. The underlying property of a Markov chain is that the next state the chain
jumps to only depends on its current state and no other before Norris and Norris (1998).

More formally, consider a state space I = 1, 2, ...,m and a collection of I - valued
random variables (Xt)t∈T where T is an index set of time. We can interpret this as the
random variable changing states at each step in time. Suppose, Xn+1 = j,Xn = i,Xn−1 =
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in−1..., X0 = i0. The defining property of a Markov Chain can be described by

P(Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X0 = i0) = P(Xn+1 = j|Xn = i)

where P(Xn+1 = j|Xn = i) is the probability of moving to state j when currently on state
i on the nth step. Furthermore, all Markov chains we will discuss are assumed to have the
property of beging time homogeneous meaning

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i)

Hence, we denote P(Xn+1 = j|Xn = i) as pij , the probability of moving to state j from
state i.

Under this notation, the transition probabilities between the m states can be represented
by the transition matrix (Grimmett and Stirzaker, 2001) given as

P = (pij) =


p11 p12 ... p1m
p21 p22 ... p2m
. . . .

pm1 pm2 ... pmm

 (2.30)

Structural Properties

We now consider some structural properties of Markov chains which we will use in our
model. For two states i and j we say that i communicates with j, or i→ j, if it is possible
to reach state j at some point, given the chain starts at i. If i→ j and j → i we say that i
and j intercommunicate, or i ↔ j. If i ↔ j for all i, j ∈ I then we say that the Markov
chain is called irreducible.

Next, we define what it means for a state to be persistent. A persistent state i is such
that

P (Xn = i for some n ≥ 1|X0 = i) = 1

which means that if the chain starts at i it will eventually return to i at some point in the
future.

The first passage time of a state i is defined as

Ti = min{n ≥ 1 : Xn = i}

which is first unit in time that the Markov chain reaches i. The expected value of this is
defined as the mean recurrence time and is given as

µi = E(Ti|X0 = i)

If µi <∞ then we say that state i is non-null persistent.

Limiting and Stationary Distributions

This matrix can be used to identify the expected distribution of the Markov chain after
a certain time. To do so we discuss the distribution of such a Markov chain at a time
n. This is defined to be an m-dimensional row vector λ(n) with entries λ

(n)
i that describe

the probability of the random variable being at state i after n steps. As this describes

a distribution of a random variable we must have λ
(n)
i ≥ 0 and

∑
i∈I λ

(n)
i = 1. By this

definition, λ(0) is the probability that the chain starts at each state as is referred to as the
initial distribution.
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Consider Applying λ(0) to P , as defined in (2.30). Then entry i of the new vector will
be given as

λ
(0)
1 p1i + λ

(0)
2 p2i + ...+ λ(0)

m pmi =
∑
j∈I

λ
(0)
j pji

which is the probability of being at state i after 1 step. Therefore this new vector is exactly
λ(1)! Applying λ(1) to P we thus obtain λ(2) and applying this again to P we get λ(3) and
so on (Grimmett and Stirzaker (2001)). Hence

λ(n) = λ(n−1)P = λ(n−2)P 2 = ... = λ(0)Pn (2.31)

Suppose now that we have a distribution which we denote as π with the defining
property

π = πP

Then this distribution is defined as a stationary distribution of the Markov chain. In fact,
if λ(n) converges as n → ∞ in the first equality of (2.31), we see that π is exactly λ(∞),
the limiting distribution of the Markov chain. Denoting each entry in π as πi then we have
the limiting probability of being at state i.

For the rest of the stochastic model we are going to use the fact that an irreducible
Markov chain with finite states has a unique stationary distribution π. Details of the
proofs for this are given in Grimmett and Stirzaker (2001). The main results required
for this are that a finite Markov chain has at least 1 non-null persistent state and that
intercommunicating states have the same persistence. Using, this we know that an
irreducible finite Markov chain must have all states non-null persistent. The final result
comes from the Theorem stating that a Markov chain with all states non-null persistent
will have a unique stationary distribution.

2.4.2 Fitting the Tennis Data Set

The idea behind setting up the Markov Chain

Consider a system that depicts the current best tennis player according to a fan. We may
encapsulate this onto a Markov chain whose states refer to different players. In this case,
the transition probabilities refer to the likelihood of a fan switching between their favourite
players. In practice, this could occur when a match concludes in the favor of another player
thereby leading to the fan preferring the winner. Thus, we introduce a link from state i
to j only if j has beaten i at least once. On a separate note, a link from state i to itself
denotes the event in which a fan stays with the same player.

The transition probabilities can be assigned based on the match data between players.
The link from state i to itself represents the probability of i winning a match in general.
This can be set as the win percentage of a player across all of their matches. The remaining
links going out from the player state is weighted based on the number of matches they
have lost against other players.

Setting the nodes - players and by adding links between the players, we can construct
the transition matrix that is needed for the process of finding the steady state vector. As
not all players may have played against each other, we construct ghost links that are all
equal in probability from where they extend from. We set their values as a small proportion
of that of the existing links. This is to avoid cases when a player has never lost and ends
up hoarding all the fans. Also, this fixes the case when players are left with zero fans and
a comparison between them may be deemed insignificant. The following algorithm 1 shows
the construction of the transition matrix in more detail. We note that the resulting Markov
chain is fully-connected, and is thus both aperiodic and irreducible. It then makes sense to
solve for the unique steady-state vector.
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Algorithm 1: Transition Matrix Construction

1 getTransMatrix (n, r,p)
Input : n: no. of players; r: results of games between players

2 ; p: proportion of ghost links
Output :Matrix A with transition probabilities as entries

3 A = (aij);
4 for i← 1 to n do
5 aii = games won(i, r)/games played(i, r);
6 end
7 foreach (i, j) in r do
8 # where i wins over j
9 aji+ = 1/games played(j, r);

10 end
11 for i← 1 to n do
12 if

∑n
j=1 aij > 0 then

13 for j ← 1 to n do
14 aij = 1/n
15 end

16 else
17 num no links = length([aij == 0 for j ← i to n])
18 for j ← 1 to n do
19 if aij == 0 then
20 aij = p/(num no links× (1 + p))
21 else
22 aij/ = 1 + p
23 end

24 end

25 end

26 end
27 return A;

Deriving the Steady-State Probabilities

We devise the following procedure to approximate the steady-state probability vector.

1. Distribute a number of fans, say 1000, equally among all the player states.

2. At each iteration, a fan can either remain or switch to a different state consistent
with the transition probabilities.

3. After a large number, say 10000, of iterations, an approximate distribution of fans is
found and used to derive the steady-state probabilities. The best case would be for
the number of iterations to approach to infinity but this is not feasible in practise.

A diagram for the Markov chain for the top ten players is illustrated in Figure 2.6. This,
though more intuitive and likened to practice, is less efficient of a process. To cross-reference,
we also calculate the steady-state vector directly through matrix exponentiation.
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Table 2.7: Top ten players according to the final proportion of fans in their state after
running the simulation at iteration steps: 0, 1, and 10000.

Player
% of fans

t = 0 t = 1 t = 10000

1 Federer 0.0100 0.0215 0.2118
2 Nadal 0.0100 0.0237 0.0932
3 Zverev 0.0100 0.0235 0.0477
4 Goffin 0.0100 0.0195 0.0351
5 del Potro 0.0100 0.0158 0.0339
6 Dimitrov 0.0100 0.0177 0.0328
7 Sock 0.0100 0.0170 0.0237
8 Djokovic 0.0100 0.0125 0.0211
9 Krajinovic 0.0100 0.0113 0.0208

10 Thiem 0.0100 0.0164 0.0200
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Figure 2.6: Markov State Diagram for the top ten
players in the ATP rankings.

As every state is connected to each
other with positive probabilities, then
the steady-state vector, which we shall
denote as v, will not contain a zero
entry referring to any of the players.
Thus we proceed by defining the prob-
ability player i beats j as

P(i ≻ j) =
vi

vi + vj

where vi and vj refer to the steady-
state entries that correspond to the
states of players i and j respectively.
This is a rather natural way to define
the likelihood of match outcomes as is
the case of the Bradley-Terry model.

The following Table 2.7 shows the
proportion of fans at each player in
varying iteration steps. The players
are ranked according to the final pro-

portion of fans found. The steady-state vector is also computed directly and is given in
order of players as in Table 2.7 by

v = (0.2113, 0.0933, 0.0470, 0.03497, 0.0343, 0.0331, 0.0242, 0.0214, 0.0200, 0.0198, . . .)

Indeed we observe a similar distribution across the players in both methods.
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Chapter 3

Bayesian Statistics & Paired
Comparison

Up to this point, we have observed the topic of paired comparison through the lens of
traditional frequentist statistics, where we have assumed players to possess underlying
skill parameters, ρ whose relative value will determine their chance of winning against
an opponent. At this point we pursue an investigation into Bayesian statistics in hopes
of extending our models to help reckon any initial beliefs or intuitions we might have
regarding our system.

Whereas previously we modelled players’ skill levels as fixed parameters, with some
true quantitative value, we will now consider ratings as realizations of random variables,
following some distribution we will attempt to determine. This should come as a fairly
natural extension, as we have already seen how some models can analogously be stated
by considering a player’s performance in a given match as being randomly distributed
about his/her true skill level (normally distributed in the case of the Thurstonian and Elo
rankings and Gumbel in the case of BT). This analysis will add another layer of control by
which we will be able to “tweak” our model.

We begin with an overview on Bayesian inference, outlining theory and highlighting key
results which we will use in our application at hand. This will include a brief discussion on
the Metropolis-Hastings algorithm that will be instrumental in our computational results
for the chapter. After this we conclude with an example by using our theory to adapt the
BT model with three different hypothesized distributions on player rating, and investigating
performance on our standard tennis data set.

3.1 Overview of Bayesian Statistics for Paired Comparison

The following overview is scoped in the context of paired comparison for the convenience
of the reader.

The novel step for Bayesian inference is that we first look to select a prior distribution
to impose on our system, to reflect any initial beliefs we may have about the nature of the
distribution of player ratings – i.e. our initial guess as to how players are distributed in skill
level. We denote this prior as p(θ) to be consistent with the work of Gelman et al. (2013).
Next, we look to reckon our prior with the data observed to generate an improved estimate
on our model distribution for player rating, the posterior distribution. Mathematically,
this is given by Bayes’ rule as

p(θ|Y ) =
p(θ)p(Y |θ)

p(Y )

This gives us the form for our posterior, p(θ|Y ) where p(Y |θ) – our sampling distribution –
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is equal to the likelihood of realizing our data Y given θ (for clarity we write this as Lθ(Y )
going forward), and p(Y ) is the marginal likelihood

p(Y ) =

∫
θ
p(θ)p(Y |θ)dθ

The fact that this quantity does not depend on θ means that for a fixed Y it can be
taken as constant which leads to the commonly used alternative statement of the posterior
distribution

p(θ|Y ) ∝ p(θ)Lθ(Y ) (3.1)

This simply tells us that the posterior is proportional to the prior times the likelihood.
For our purposes, we will be interested in the value of θ that maximizes our form of the

posterior distribution, p(θ|Y ). This quantity is referred to as the maximum a posteriori
(MAP) estimate, denoted θ̂MAP , and tells us the value of our distribution parameter that
was most likely to realize our data. By proportionality, this will be precisely the value that
maximizes 3.1.

3.1.1 Markov Chain Monte Carlo Method (MCMC)

Extending the last idea we proposed before, MCMC methods can widely be used in
Bayesian inference. MCMC were first introduced by a physicist and mathematician Nicolas
Metropolis and these methods are usually used to generate samples directly from the
“unormalized part” of the posterior, instead of dealing with intractable computations. The
idea behind MCMC methods, is to construct a Markov Chain in which its equilibrium
distribution is the posterior to sample from (it can be a very complicated posterior
distribution). Below, we introduce the Metropolis - Hastings Algorithm (MCMC method)
one of the most known algorithms developed by Metropolis et al. (1953).

Metropolis - Hastings Algorithm

Metropolis et al. (1953), came up with a very powerful idea which is a computer based
algorithm that was used for studying the properties of chemical substances between
collisions of individual particles. Hastings (1970) generalized the algorithm such that any
probability distribution can be sampled from this algorithm.

The procedure of the algorithm starts by making an initial guess which is used as the
starting position of the Markov Chain. Now, let Xt to denote the current state, for t ⩾ 0,
of the Markov Chain. We draw a (candidate) sample Y, which is sampled from an arbitrary
distribution q(·|Xt). Then, the candidate sample can either be rejected or accepted based
on the following criterion:

a(X,Y ) = min

{
1,

π(Y ) · q(Xt|Y )

π(Xt) · q(Y |Xt)

}
where a(X,Y ) is called the Metropolis - Hastings acceptance probability. The min function
restricts the probability to be no larger than 1. Now, if the above ratio is greater than 1,
we can say that the candidate sample Y is accepted which means that the next state is
updated to Y meaning Xt+1 = Y . Otherwise, if the sample is rejected, we can say that the
state doesn’t change, it remains where it was and Xt+1 = Xt

Now, we can proceed in further details by exploring in more depth the two cases of
accepting and rejecting and what is really happening in either case:
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Algorithm 2: Metropolis-Hastings Algorithm

1 select initial sample x0 ∈ Rn and γ for i← 1 to N− 1 do
2 draw xp ∈ Rn from the proposal distribution q(xp | xi)

3 calculate the ratio r(xi,xp) = min(1,
π(xp)q(xi|xp)
π(xi)q(xp|xi)

)

4 draw u ∈ [0, 1] from uniform probability density
5 if r(xi,xp) ≥ u then
6 xi+1 = xp

7 else
8 xi+1 = xi

9 end

10 end

Case 1: Sample Candidate Accepted and Xt+1 = Y
The probability of accepting the candidate Y equals to

P (Y |Xt) = q(Y |Xt) ·min

{
1,

π(Y ) · q(Xt|Y )

π(Xt) · q(Y |Xt)

}
This can be proved by considering the detailed balance equation. The detailed balance
equation is defined as

π(Xt)P (Y |Xt) = π(Y )P (Xt|Y )

Hauser (2013) proved that the Markov Chain derived from the Metropolis - Hastings
algorithm satisfies indeed the detailed balance equation. This guarantees that the station-
ary distribution of the Metropolis - Hastings algorithm is the target posterior that is needed.

Case 2: Sample Candidate Rejected and Xt+1 = Xt

In the case where we reject the sample candidate, the chain doesn’t change state and
it simply remains to the current state it is. The probability of rejecting the sample Y is
equal to the complementary probability of the acceptance case. By recalling now that
every reversible Markov Chain has a stationary distribution, then the Metropolis - Hastings
algorithm is satisfied due to reversibility of our Markov Chain and the equation, always
holds. Hence, this stationary distribution can be achieved from the Metropolis - Hastings
algorithm.

3.1.2 Construction of Transition Matrix

We define the transition matrix as follows,

Pij = P (Xn = j|Xn−1 = i) =

{
q(i, i) · α(i, j), if j ̸= i
q(i, i) +

∑
k ̸=i q(i, k) · (1− α(i, k)), otherwise

}
(3.2)

As with any Transition matrix, the rows have positive entries and their sum equals to 1.
If any entry in the steady state vector is 0, then the minimum will be taken to be 1, by
definition of the construction matrix.

3.1.3 Symmetric Prior - Proposed Distributions

In the case of a symmetric distribution, the Metropolis - Hastings Algorithm gets simplified
to a ratio that is more easily handled. Metropolis et al. (1953) showed that for a symmetric
distribution

q(Xt|Y ) = q(Y |Xt)
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and the Metropolis - Hastings acceptance probability can be simplified to

a(X,Y ) = min

{
1,

π(Y )

π(Xt)

}
We will next consider, two symmetric distributions, the Normal and the Uniform Distri-
bution. Since both of these two distributions are symmetric, the simplified ratio will be
used.

3.2 Bradley-Terry model using Bayesian Inference

The first work done for the Bayesian Inference of the Bradley-Terry model, was proposed
by Davidson and Solomon (1973). In their work, they use a family of prior and estimators
for calculating the posterior distribution of the log-abilities, and at the end, use this to
calculate the rank of the players. In our case, for the BT model, a single match between
two players i and j occurs, and as before the model looks to evaluate the probability of i
beating j (P(i ≻ j)), without loss of generality. Hence, we can separate the likelihood of
our simple Bayesian Bradley-Terry model into two considerations:

• Likelihood of Win: We write the probability of i beating j in the standard way
according to the BT model:

P(i ≻ j) =
exp(γi)

exp(γi) + exp(γj)

or equivalently yij ∼ Bernoulli(P(i ≻ j)) where

yij =

{
1, i ≻ j

0, j ≻ i

• Sampling Distribution: Given our Bayesian prior, we must also take into account
the probability of realizing our skill level.

The γi’s can follow a prior distribution in accordance to the choice of the statistician. For
instance, Leonard (1977) suggests a prior on the vector of skill parameters γ = (γ1, , , , γn)
in the form of a multivariate normal distribution with mean µ = (µ1, ..., µ2), and covariance
matrix Σ = σ2I: γ ∼ Nn(µ,Σ). We will take this a step further by saying as we are
sampling from a single unified population, we will assume equal mean for all our skill
parameters, or µ1 = ... = µn = µ0. By the marginal distributions, we deduce that
{γ1, ..., γ2} are i.i.d. with

γi ∼ N(µ0, σ
2)

By the rescaling property of the BT ratings, we are able to shift the distribution and
restate this in the form γi ∼ N(0, σ2).

The mean of the γ′is is set to be zero since it doesn’t have an effect on estimating the
parameter. The standard deviation, is not set equal to zero since it represents the space,
where the model should look at, trying to find the relative differences in the probabilities.
Higher standard deviations, imply that probabilities are very close to either 0 or 1 and
the, small standard deviations mean that are not close to these two endings, more likely to
deviate around the middle.
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3.2.1 Choice of Prior Distributions

Choosing a prior distribution is difficult, and many prior distributions have been candidates
to be chosen. There is no correct choice of prior, but rather a statistician opinion.
Many people that have been researching throughout the Bayesian Statistics applied to the
Bradley Terry model, have proposed different priors. This is actually the magic of Statistics,
personal opinion and initiative may contribute a lot. As mentioned before, Leonard (1977)
proposed a Normal prior, additionally, Caron and Doucet (2012) explored use of the gamma
distribution, while Chen and Smith (1984) worked with Dirichlet distribution and Davidson
and Solomon (1973) used a Beta distribution. In this paper, we are going to consider three
different priors, keeping Leonard’s proposal of the Normal distribution and we are also
going to consider the Gamma distribution and the Uniform distribution, discussing any
advantages or disadvantages we face for each model.

1. Normal Distribution

The case of Normal Distribution is presented, having the γ′is to follow a Normal
Distribution with mean 5 and finite variance. An incentive to use unit variance is
taken in order to create a Normal Distribution so that by raising e to the normal,
we will get the log - normal distribution with mean e5.5 and variance e11(e − 1).
Intuitively the Normal distribution makes a reasonable assumption that the strengths
should be distributed according to a Gaussian curve, having less players with very
high or low strength (tails) and many players in the middle.

2. Gamma Distribution

The case of Gamma distribution is presented by many authors due to its ease to work
with. The use of MCMC methods, extinguishes the difficulty to work with difficult
distributions and thus Gamma Distribution could not be used. However, since the
prior distribution clearly depicts the ratings - strengths of the players, the curve of
the Gamma distribution is a very good candidate, more of a natural intuition, for the
actual distribution of the strengths. Hence, the Gamma distribution with parameters
α = 2 and b = 1 is selected to describe the strengths of the players in the tennis data
set. Note here that the Gamma distribution is similar to the Normal but is skewed
to the left.

3. Uniform Distribution

The case of Uniform distribution is also lastly presented, which intuitively means
that all players have common strength. In practise, this defies the abilities of each
player, making all the players to have equal strength. Intuitively this case doesn’t
seem ideal as far as ranking players is concerned, since equal strengths are very rare
to occur in a data set, always there will be someone who is better or worst to another
player. Another way to quote this is to say that the chances of a player being super
skilled and super unskilled are similar.

3.2.2 Fitting the Tennis Data Set

We assign the mentioned priors on the strengths of each player and sample from their
posterior distribution using the Metropolis-Hastings algorithm, taking into account the
likelihood of each match outcome under the Bradley-Terry model. We find the maximum a
posteriori (MAP) estimate and use these values to rank each player. The following tables
list the top ten under each prior.
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Figure 3.1: Probability densities of a gamma, normal, and uniform distribution shifted
horizontally in the bounds [0, 10].

Table 3.1: Real ATP 2017 Rankings

Rank Player

1 Nadal
2 Federer
3 Dimitrov
4 Zverev
5 Thiem

6 Čilić
7 Goffin
8 Sock
9 Wawrinka
10 Busta

Table 3.2: Top ten players according to
their Gamma(2, 1)-distributed strengths.

γ Player

1 4.7527 Federer
2 4.6979 Krajinovic
3 4.01684 Nadal
4 3.6204 del Potro
5 3.3315 Djokovic
6 3.0896 Dimitrov
7 3.0746 Wawrinka
8 3.0629 Zverev
9 2.9797 Tsonga

10 2.9714 Murray

Table 3.3: Top ten players according to
their N(5, 1)-distributed strengths.

γ Player

1 8.2864 Federer
2 7.5402 Nadal
3 7.3924 Krajinovic
4 6.8351 Wawrinka
5 6.7616 Djokovic
6 6.6578 del Potro
7 6.5384 Dimitrov
8 6.4745 Zverev
9 6.3618 Murray
10 6.2728 Raonic

Table 3.4: Top ten players according to
their U(0, 10)-distributed strengths.

γ Player

1 9.9248 Fabbiano
2 9.8794 Mmarterer
3 9.7158 Delbonis
4 9.0302 Djere
5 8.6304 Darcis
6 7.8345 Chung
7 7.8225 Pella
8 7.8099 Zverev
9 7.6149 Vesely

10 7.5129 Lajovic
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3.2.3 Conclusions

In examining the three different rankings we keep their respective prior distributions (Figure
3.1) in mind to explain some of our more prominent trends. Upon inspection, Table 3.4
immediately sets itself apart from both the simulated rankings and real ranking. Indeed,
this is perhaps an unsurprising confirmation that the uniform distribution is not a good
guess for the distribution of skill across players. In this regard, this acts as a “sense-check”
for our methodology, pleasantly surprising with the results and confirming our intuition for
the uniform distribution by ranking players that don not belong in the top ten. With the
exception of Zverev many of the names appearing on the list will likely be new to all but
the more avid tennis watchers.

Moving to Table 3.2 and Table 3.3 we see that the normal and gamma priors seem to
fare fairly well in comparison to the real rankings. Again, this is perhaps unsurprising
considering the similarities between the gamma and normal. Moreover, on the surface, one
might expect the normal distribution to be an intuitively better allocation of strengths
since many quantities in real life follow normal distributions, from intelligence measures
(IQ) to physical ability and income distribution. In many practical occasions, few people
live at the ends and many in the center. Intuitively this is clearly described by the normal
distribution. In addition to this, the positively skewed gamma distribution appears to be
a good fit for the players strengths based on the ranking we obtain. A comprehensive
set of quantitative statistical tools and metrics for computing accuracy of each model are
described formally in the next section.
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Chapter 4

Comparison of Models

In this chapter, we compare the fits of each discussed model on the ATP men’s professional
tennis data set. Namely, we look at the performance of the Bradley-Terry model and our
Bayesian extensions, the Elo rating scheme, the Glicko and Glicko2 rating schemes, and
the Fickle Fan model.

As each model has a configurable set of parameters, we find appropriate estimates by
maximising the log-likelihood for the cross-validation process in the case of Elo, Glicko,
and Glicko2, as explained in their respective sections. Whereas with the Bradley-Terry
model, we make use of the BradleyTerryScalable package (Kaye et al., 2017) which
provides tools to fit the model in sparse scenarios, i.e. a disconnected comparison graph.
In particular, it creates a dummy player and places a prior gamma distribution on their
skill. This, in turn, allows the graph to be fully connected. We chose an arbitrary shape
parameter a = 1.5 for this prior gamma distribution. For our Bayesian extensions, the
priors on the players’ strength coefficients that we consider are: a gamma distribution
with shape a = 2 and rate b = 1, a standard normal distribution shifted horizontally, and
a uniform distribution, all within the bounds [0, 10]. As for the Fickle Fan model, we
arbitrarily set the proportion between the sum of probabilities of existing links to the sum
of probabilities of ghost links to 0.01.

Their accuracy is determined through different heuristics, each either comparing against
the ATP rankings at the end of the data set’s time period, based on tournament points,
or the likelihood to some degree between models. Briefly, each heuristic is explained and
motivations for using them are outlined. At the end, a summary of the results are shown.
We primarily use the following notation below for consistency

• N = total number of players ranked

• yi =

{
1 if the higher rated player won

0 if the higher rated player lost

• pi = modelled probability that the higher rated player wins

4.1 Spearman’s Rank Correlation Coefficient

One approach for determining accuracy is by comparing the model-predicted ranking to
the players’ actual ranking. A measure for correlation of ranks developed by Spearman
(1961) is a well-known example. It is given by

ρ = 1−
6 ·
∑N

i=1 d
2
i

N · (N2 − 1)

where di denotes the difference between the actual and the predicted ranks. The closer
the coefficient is to 1, the better the accuracy. As it is non-parametric, it is not affected
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by however the population is distributed. This makes it viable for smaller sample sizes.
Outliers are also bounded by the number of ranks, and therefore this measure is not easily
affected (Gauthier, 2001). A problem with this approach, however, is that information on
the margin of skill between players is lost and is never extensively compared with actual
results. In some sense, we assume a constant margin between any two consecutive ranks.

In addition, a significance test for the result can be constructed via the statistic

t =
ρ
√
N − 2√
1− ρ2

(4.1)

which follows a Student t distribution with N − 2 degrees of freedom (Zar, 1972). For
weakly correlated but large sample sizes, a strong significance could still be achieved. Hence,
we perform a separate fit for the model where only the top ten players and their pairwise
matches are considered. This way, a more useful significance value can be derived.

We fit the match data to the models twice, one containing matches between the top 100
players and one with the top ten. Their coefficients are calculated based on ATP-regulated
matches in 2017 and compared against the ATP rankings at the end of 2017. A significance
test is done for coefficients under the smaller sample size. Table 4.1 summarises these results.

Table 4.1: The Spearman’s rank coefficient for each model
based on the ATP data set, where σi correspond to the
coefficient for a sample of size i.

Model ρ100 ρ10 p-value (for ρ10)

Bradley-Terry
Regular 0.8558 0.6606 0.0376
Gamma(2, 1) 0.8185 0.6121 0.0600
N(5, 1) 0.8151 0.6121 0.0600
U(0, 10) 0.0349 0.3939 0.2600

Elo 0.7742 0.6485 0.0425
Glicko 0.8156 0.6606 0.0376
Glicko2 0.8171 0.6606 0.0376
Fickle Fan 0.9199 0.8061 0.0049

In both samples, the Fickle
Fan model yields the highest co-
efficient. The p-values, which
are calculated from a two-sided
hypothesis test for the statistic
in 4.1, suggest the ranking ca-
pabilities of the models, indeed,
are not arbitrary to a certain
significance level. Though, the
same can not be said with the
Bradley-Terry model under a
uniform distribution prior, ob-
taining a p-value of 0.26 and a
rather poor coefficient ρ100 of
0.0349.

A noticeable sharp decrease in performance from the models, notably the Bradley-Terry
model, is seen as the sample size is decreased. This is likely due to the larger contribution
of ranks being shifted in smaller sample sizes. Moreover, Nadal is ranked over Federer in
the actual rankings at the end of 2017, yet has lost all his games against Federer in the
match data. The Bradley-Terry model, with its inherent stochastic transitivity, is thus
likely to put Federer over Nadal regardless of their matches with other players.

It is important to note that while a large sample size may not provide meaningful
significance results, it is a better measure for the model’s accuracy, as it takes into account
games played by top players against those outside the top ten.

4.2 Brier Score

Another approach is to compare the actual results from that of the modelled probabilities.
An example is the verification score developed by Brier et al. (1950) originally intended for
weather forecasts. It is as shown below:

Brier score =
1

N

N∑
i=1

(pi − yi)
2
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which is the mean-squared error between the predictions and outcomes. The smaller it is,
i.e. the closer to zero, the better the accuracy. In contrast to the previous method, this
heuristic takes into account not only the rankings, but the degree of which each player is
more skillful than another. However, this method is unsuitable for modelling events that
either happen too rarely or frequently (Benedetti, 2010).

Table 4.2 tabulates the Brier scores of each model after calculating the individ-
ual likelihoods for each match result and finding the mean of the residuals squared.

Table 4.2: The Brier score for each
model based on the ATP data set.

Model Brier Score

Bradley-Terry
Regular 0.1865
Gamma(2, 1) 0.1994*
N(5, 1) 0.2046*
U(0, 10) 0.4081*

Elo 0.2107
Glicko 0.2044
Glicko2 0.2039
Fickle Fan 0.1941

The Bradley-Terry model outperforms the other
models by a narrow margin. This could be due to
its underlying mechanism of having assigned players
their scores that maximise the likelihood of observing
the entire outcome of matches. Naturally, this too
should optimise the individual likelihoods of each
match to some extent.

Scores marked with stars in Table 4.2 are derived
from matches between the top 100 players. This is
the case as finding optimal start values for over 500
players with given priors in the Metropolis-Hastings
algorithm takes a significant amount of time and
computing power. Instead, we may compare the
performances of the different priors with respect to
each other. The gamma and standard normal priors were considerably better in this setting,
which could suggest the assumption of uniform skill is a rather restrictive construct in the
tennis scene.

As for the Elo, Glicko, and Glicko2 models, the likelihoods were evaluated after all the
ratings have been calculated. Another option would be to do so at each rating period and
perform successive updates as an approximation for the full-likelihood (Glickman, 1999).

What is interesting is the performance of the Fickle Fan model in comparison with the
others. Nowhere in the model is the likelihood of quantities maximised, but potentially
there could exist some latent process stemming from the way in which transition probability
weights are distributed that inherently does this.

4.3 Cross-Validation

Another method which builds off the above idea is to compare each model’s performance
when introduced to unseen data. Cross-validation, also known as rotation estimation, is
an example often used in machine learning and statistics. It works by isolating a portion
of the data set for training the model and testing its predictive accuracy on the rest of the
data. A subset of this is multi-fold cross-validation. Here, the data set is partitioned,
where one is used as test data and the rest as training data. The average performance
of the trained model across the different partitions is then evaluated (Refaeilzadeh et al.,
2009).

As is the case with most correlation and regression problems, a tendency is to over-fit
from the data they are trained on. This is exactly the making of poor predictions in
previously unseen data typically caused from oversampling. Cross-validation aims to
quantify this (Santos et al., 2018). At the expense of more computationally intensive
processes, multi-fold cross validation make use of all pieces of information in the data set
and is typically preferred over, say, the traditional half-partition cross-validation process
for large sample sizes (Hawkins, 2004).

We perform a 10-fold cross-validation test for the models given the entire match data
set. As all models have some form of predicting the probability of a player beating another,
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each is judged on their average log-likelihood across all partitions as shown in Table 4.3.

Table 4.3: The average log-likelihood derived
throughout a 10-fold cross-validation test for
each model based on the ATP data set.

Model Avg. Log-likelihood

Bradley-Terry
Regular -238.2756
Gamma(2, 1) -105.7630*
N(5, 1) -107.3926*
U(0, 10) -162.2748*

Elo -241.2198
Glicko -241.3376
Glicko2 -241.3514
Fickle Fan -254.5593

The Bradley-Terry model once again
outperforms the other models. A similar
reason from the previous section is sug-
gested to have been the cause. An impor-
tant remark on the methodology used is
there have been instances when the train-
ing data bears no relevance to the test data,
e.g. all the matches of a player are situated
within the test data, and no such proba-
bility can be assigned to the likelihood of
such match. To overcome this, we disregard
these cases, i.e. assign them a likelihood
of 1. This still presents an even playing
field for the models as these cases are all
the same and is present among all of them.
After all, the goal of this test is to compare

performances relative to each other, rather than interpreting the individual results.
Values starred in Table 4.3 were derived from 10-fold cross-validation of matches played

between the top 100 players. This is for a similar reasoning before with the significant
computation overheads. Despite this, the gamma prior performs better than the standard
normal, which could suggest a non-symmetric distribution of skill may be more in line in
practice. Once again, the uniform prior performs substantially worse for a similar reason.

The Elo, Glicko, and Glicko2 models perform relatively the same given their fine-tuned
parameters from this very procedure. A possibility is that within the short time-span
of the data set, rating deviation and volatility may not have played a huge role. And
in estimating for these parameters, indeed we found them to be smaller than typically
expected. As an example, the increase in volatility per unit time was estimated to be
smaller than the suggested 0.3-1.2 by Glickman (1995b). In some sense, this reduces the
Glicko models to their Elo counterpart.

4.4 Conclusions

Three methods were employed to evaluate the accuracy of the models, each with an
underlying purpose: testing for correlation and explicit ranking accuracy, testing for
individual likelihoods of matches, and testing for their ability to make predictions on
previously unseen data. From these, we develop a better understanding for how each
model fares in these key areas and how it ties in with their general theory. Table 4.4 below
summarises the accuracy of the different models through the methods discussed above.

In general, multiple observations can be made. We do see that the Glicko and Glicko2
ratings outperform the Elo rating by a small margin in the Spearman’s coefficient and
Brier score measures. This could be indicative of how the rating deviation and volatility
parameters allow more accurate assessment of an individual’s strength and should therefore
result in a better ranking. However, its effects are not as apparent. This may be attributed
to the disproportionate distribution of games played by each player in a rating period. The
ATP data set mainly consists of single bracket elimination formats, wherein players who
are eliminated early play significantly less games than those who progress. Although the
average number of games per rating period is within accepted bounds, updates of ratings
may be too frequent to register the actual trends in a player’s deviation and volatility.

The regular Bradley-Terry model is consistent across the different metrics used and is
quite likely a very suitable model for predicting tennis matches. Its Bayesian extensions
have varied performances. Both fits by the gamma and normal priors had similar success

39



Table 4.4: Summary of the models’ accuracy based on different heuristics.

Model
Spearman’s Rank Coefficient

Brier Score
Cross-Validation
(Log-likelihood)ρ100 ρ10 p-value (ρ10)

Bradley-Terry
Regular 0.8558 0.6606 0.0376 0.1865 -238.2756
Gamma(2, 1) 0.8185 0.6121 0.0600 0.1994* -105.7630*
N(5, 1) 0.8151 0.6121 0.0600 0.2046* -107.3926*
U(0, 10) 0.0349 0.3939 0.2600 0.4081* -162.2748*

Elo 0.7742 0.6485 0.0425 0.2107 -241.2198
Glicko 0.8156 0.6606 0.0376 0.2044 -241.3376
Glicko2 0.8171 0.6606 0.0376 0.2039 -241.3514
Fickle Fan 0.9199 0.8061 0.0049 0.1941 -254.5593

with their regular counterpart, whereas the uniform prior failed to meet the same figures.
Imprecise priors have the tendency to produce imprecise posterior and therefore MAP
estimates in the use of an MCMC algorithm (McDonald and Hodgson, 2018). This is
likely the case as to the considerable divergence in rankings and performance across the
heuristics.

One of the models which stood out the most was the Fickle Fan model, one which made
use of Markov chains. For its simplicity, it effectively condenses the complex relationships
between players into a single object. In practice, the Elo rating scheme benefits from this
as its simplicity makes scoring and rankings more transparent towards the players. Rather
than running a simulation, of course, a direct calculation for the steady-state vector can
be made. It excels in predicting actual rankings, but the likelihood it gets from match
outcomes is still edged out by the others such as the Bradley-Terry model. A further
improvement could be to fine tune the proportionality constant used in setting ghost links
between states so as to maximise the likelihood of matches under its fit. At the moment,
this is computationally intensive, as steady-state vectors for large transition matrices are
calculated at each value the optimiser considers, while searching for a local maximum.
Nevertheless, it has some potential and other ways of distributing weights on transition
probabilities could be explored.

In summary, subsets amongst the models have different inner-workings that rely on
certain conditions for performance: a complete comparison graph or even a precondition of
players having played a certain amount of games. Each have their own strengths, simplicity
being one of them, and each have their room for improvement, one being the extension
from a Frequentist to a Bayesian approach. Most especially, a vast majority of models
require some proper estimates for their initial parameters. Their computational costs
and improvements vary from one another. In the context of tennis, the models produced
relatively strong rankings of players and maximised the likelihoods of matches to a certain
extent. Depending on the tournament formats, sample sizes, and consistency of intervals
between games, each model is well-suited in one setting or another.
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Chapter 5

Appendix

5.1 Bradley-Terry Model

5.1.1 Fitting the Model

The following was used to fit the Bradley-Terry model onto match results of the 2017 ATP
tennis data set. This produces the rankings as found in Table 2.1 and the balloon graph in
Figure 2.2.

1 # Set-up

2 ## Libraries

3 library("jsonlite")

4 library("BradleyTerryScalable")

5
6 ## Retrieving tennis data set

7 json_file <- ’https://datahub.io/sports-data/atp-world-tour-tennis-data/

datapackage.json’

8 json_data <- fromJSON(paste(readLines(json_file), collapse=""))

9
10 path_to_files <- json_data$resources$path
11 match_data <- na.omit(read.csv(url(path_to_files[34])))

12 player_data <- na.omit(read.csv(url(path_to_files[38])))

13
14 # Fitting the data

15 ## Formatting data for BradleyTerryScalable package

16 win_lose_tally <- dplyr::count(match_data, winner_player_id, loser_player_id)

17
18 tennis_btdata <- btdata(win_lose_tally, return_graph=TRUE)

19 tennis_btfit <- btfit(tennis_btdata, 1.5)

20
21 ## Visualising the comparison graph

22 library(igraph)

23 comp_graph <- tennis_btdata$graph
24 par(mar = c(0, 0, 0, 0) + 0.1)

25 plot.igraph(comp_graph, layout=layout.circle, vertex.size = 1, edge.arrow.size =

0.05, vertex.label=NA)

26
27 # Get list of players in order of coefficients

28 tennis_id_coef <- coef(tennis_btfit, as_df=TRUE)[c(’item’, ’coef’)]

29 player_names <- player_data$player_slug[match(tennis_id_coef$item, player_data$
player_id)]

30
31 tennis_player_coef <- tennis_id_coef[, ’coef’]

32 tennis_player_coef$player_name <- player_names

33 print(tennis_player_coef)

34
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35 ## Balloon plot for the top 10 players

36 library(’ggpubr’)

37
38 # Get only the top players

39 num_players <- 10

40 top_players <- tennis_id_coef$item[1:num_players]
41 top_coef <- tennis_id_coef$coef[1:num_players]
42
43 # Get matrix of win percentages

44 win_pct_matrix <- outer(top_coef, top_coef, function(x, y) x / (x + y))

45 # win_pct_matrix <- win_pct_matrix - diag(0.5, length(top_players))

46 diag(win_pct_matrix) <- rep(NA, num_players)

47 colnames(win_pct_matrix) <- top_players

48 rownames(win_pct_matrix) <- top_players

49 win_pct_df <- melt(t(win_pct_matrix))

50 colnames(win_pct_df)[3] <- ’win␣%’

51
52 balloon_plot <- ggballoonplot(win_pct_df, fill="win␣%") + scale_fill_gradientn(

colors = viridis(10))

53
54 balloon_plot

5.1.2 Covariate Hypothesis Testing

While results from these hypothesis testing were never used, it offered insight into how we
might approach testing momentum in the later sections. The effects of player’s co-variate
data (dimensions of the stimuli) on their Bradley-Terry coefficients is explored, with the
findings that neither age, height, nor weight proved to have a significant effect on men’s
performance in the ATP data set, whereas both age and height did in women’s performance
in the WTA data set. An interpretation could be: after a certain level, a player’s biology
does not offer much improvement to their skill. Whereas in the men’s section we hypothesise
this level is met, the women’s section may not have and so these traits still offer some
benefit in some way. A limitation is the usage of age or biological measures directly in the
linear model, whereas a more suited method would be to bin them and create separate
coefficients for them.

1 # Perform hypothesis test: does weight, height, or age affect strength?

2 # Sample from a population

3 ## Get list of players with all the data we need and have played at least once

4 player_df <- player_data[player_data$weight_kg != 0 & player_data$height_cm != 0

& player_data$birth_year != 0 & player_data$player_id %in% tennis_id_coef$
item, ]

5
6 ## Get random players from this list

7 n <- min(100, length(player_df[,1]))

8 player_ids <- sample(player_df$player_id, size=n)

9
10 # Build Model

11 ## Observed BT coefficients

12 Y <- tennis_id_coef$coef[match(player_ids, tennis_id_coef$item)]
13
14 ## Build design matrix

15 ### Age of players is fixed as data is from 2017

16 year_data_was_from <- 2017

17
18 col_of_ones <- rep(1, n)

19 col_weight <- player_df$weight_kg[match(player_ids, player_df$player_id)]
20 col_height <- player_df$height_cm[match(player_ids, player_df$player_id)]
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21 col_age <- year_data_was_from - player_df$birth_year[match(player_ids, player_df$
player_id)]

22
23 ## Number of parameters

24 p <- 4

25 X_entries <- c(col_of_ones, col_weight, col_height, col_age)

26
27 X <- matrix(X_entries, ncol=p, nrow=n)

28
29 ## Calculate the LSE and RSS

30 beta_hat <- solve(t(X) %*% X) %*% t(X) %*% Y

31 Y_hat <- X %*% beta_hat

32 RSS <- t(Y) %*% Y - t(Y_hat) %*% Y_hat

33
34 # Perform hypothesis test on each co-variate

35 alpha <- 0.05

36 ## For weight, height, and age resp.

37 c_values <- matrix(c(c(0,1,0,0), c(0,0,1,0), c(0,0,0,1)), ncol=p-1, nrow=p)

38
39 ## Get 1-alpha statistic based on t_{n-p} distribution

40 t_stat <- qt(1-alpha / 2, df=n-p)

41
42 for(i in seq(1,p - 1)){

43 ## Get 1-alpha confidence interval

44 c <- c_values[, i]

45 beta_mean <- t(c) %*% beta_hat

46 denom <- sqrt(t(c) %*% solve(t(X) %*% X) %*% c * RSS / (n - p))

47 half_width <- t_stat * denom

48 low_bound <- beta_mean - half_width

49 high_bound <- beta_mean + half_width

50
51 ## Check if 0 is inside interval

52 within_interval <- low_bound < 0 & 0 < high_bound

53
54 ## Alternatively: find p-value

55 pivotal_qty <- abs(beta_mean/denom)

56 p_value <- 2 * pt(pivotal_qty, df=n-p, lower.tail=FALSE)

57
58 print(paste("Test␣for␣H_0:␣beta_", i, "=0:"))

59 print(paste("The␣", 1-alpha,"␣CI:␣", low_bound, ",␣", high_bound, ";"))

60 print(paste("p-value:␣", p_value, ";"))

61 print(paste("Result:␣", ifelse(within_interval, "accept␣H_0.", "reject␣H_0.")))

62 print("")

63 }

64
65 # Women’s tennis (WTA) analysis

66 ## Loading the data

67 ‘‘‘{r}

68 wta_match_df <- read.csv("https://raw.github.com/JeffSackmann/tennis_wta/master/

wta_matches_2017.csv")

69
70 wta_players_df <- na.omit(read.csv("https://raw.github.com/JeffSackmann/tennis_

wta/master/wta_players.csv"))

71
72 wta_rankings_df <- na.omit(read.csv("https://raw.github.com/JeffSackmann/tennis_

wta/master/wta_rankings_10s.csv"))

73 ‘‘‘

74
75 ## Get top 10 players
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76 rank_rows <- wta_rankings_df[wta_rankings_df$ranking_date == ’20171120’,][1:10,]

77 names <- wta_players_df$name_last[match(rank_rows$player, wta_players_df$player_
id)]

78 wta_ranking <- cbind(names, rank_rows$points)
79 colnames(wta_ranking) <- c(’player_name’, ’points’)

80
81 ## Fit to Bradley Terry Model

82 match_tally <- dplyr::count(wta_match_df, winner_id, loser_id)

83 match_tally <- transform(match_tally, winner_id=as.character(winner_id), loser_id

=as.character(loser_id))

84
85 wta_btdata <- btdata(match_tally, return_graph=FALSE)

86 wta_btfit <- btfit(wta_btdata, a=1)

87
88 wta_id_coef <- coef(wta_btfit, as_df=TRUE)[c(’item’, ’coef’)]

89 player_names <- wta_players_df$name_last[match(wta_id_coef$item, wta_players_df$
player_id)]

90
91 wta_player_coef <- wta_id_coef[, ’coef’]

92 wta_player_coef$player_name <- player_names

93 print(wta_player_coef)

94
95 # Perform hypothesis test: does height, age, or right-handedness affect strength?

96 # Sample from a population

97 player_df <- wta_players_df[wta_players_df$player_id %in% wta_id_coef$item, ]

98
99 ## Get random players from this list

100 n <- min(300, length(player_df[,1]))

101 player_ids <- sample(player_df$player_id, size=n)

102
103 # Build Model

104 ## Observed BT coefficients

105 Y <- wta_id_coef$coef[match(player_ids, wta_id_coef$item)]
106
107 ## Build design matrix

108 ### Age of players is fixed as data is from 2017

109 year_data_was_from <- 2017

110
111 col_of_ones <- rep(1, n)

112 col_height <- player_df$height[match(player_ids, player_df$player_id)]
113 col_age <- year_data_was_from - player_df$dob[match(player_ids, player_df$player_

id)] %/% 10000

114 col_right <- ifelse(player_df$hand[match(player_ids, player_df$player_id)] != ’R’

, 0, 1)

115 # col_left <- ifelse(player_df$hand[match(player_ids, player_df$player_id)] != ’L

’, 0, 1)

116
117 ## Number of parameters

118 p <- 4

119 X_entries <- c(col_of_ones, col_height, col_age, col_right)

120
121 X <- matrix(X_entries, ncol=p, nrow=n)

122
123 ## Calculate the LSE and RSS

124 beta_hat <- solve(t(X) %*% X) %*% t(X) %*% Y

125 Y_hat <- X %*% beta_hat

126 RSS <- t(Y) %*% Y - t(Y_hat) %*% Y_hat

127
128 # Perform hypothesis test on each co-variate
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129 alpha <- 0.05

130 ## For weight, height, and age resp.

131 c_values <- matrix(c(c(0,1,0,0), c(0,0,1,0), c(0,0,0,1)), ncol=p-1, nrow=p)

132
133 ## Get 1-alpha statistic based on t_{n-p} distribution

134 t_stat <- qt(1-alpha / 2, df=n-p)

135
136 for(i in seq(1,p - 1)){

137 ## Get 1-alpha confidence interval

138 c <- c_values[, i]

139 beta_mean <- t(c) %*% beta_hat

140 denom <- sqrt(t(c) %*% solve(t(X) %*% X) %*% c * RSS / (n - p))

141 half_width <- t_stat * denom

142 low_bound <- beta_mean - half_width

143 high_bound <- beta_mean + half_width

144
145 ## Check if 0 is inside interval

146 within_interval <- low_bound < 0 & 0 < high_bound

147
148 ## Alternatively: find p-value

149 pivotal_qty <- abs(beta_mean/denom)

150 p_value <- 2 * pt(pivotal_qty, df=n-p, lower.tail=FALSE)

151
152 print(paste("Test␣for␣H_0:␣beta_", i, "=0:"))

153 print(paste("The␣", 1-alpha,"␣CI:␣", low_bound, ",␣", high_bound, ";"))

154 print(paste("p-value:␣", p_value, ";"))

155 print(paste("Result:␣", ifelse(within_interval, "accept␣H_0.", "reject␣H_0.")))

156 print("")

157 }

5.1.3 Momentum Hypothesis Testing

This section displays the code used for the momentum test conducted in section 2.1.6. The
process is composed of four steps (1) retrieving and partitioning match data into sets as
described in our our methodology (2) constructing our log likelihood function as a sum
across the partitioned data (3) optimizing our log likelihood function using built-in R
functions (4) estimating our variance of our momentum parameter’s marginal distribution
as the corresponding diagonal element of the (Hessian) Fisher information matrix.

1 # Set-up

2 ## Libraries

3 library("jsonlite")

4
5 ## Retrieving tennis data set

6 json_file <- ’https://datahub.io/sports-data/atp-world-tour-tennis-data/

datapackage.json’

7 json_data <- fromJSON(paste(readLines(json_file), collapse=""))

8
9 path_to_files <- json_data$resources$path
10 match_data <- na.omit(read.csv(url(path_to_files[34])))

11 player_data <- na.omit(read.csv(url(path_to_files[38])))

12 ranking_data <- as.data.frame(read.csv(url(path_to_files[37]), nrows=300))

13
14 matches <- match_data[c(’winner_player_id’, ’loser_player_id’, ’match_score_

tiebreaks’, ’tourney_order’)]

15
16
17 ## Only consider top N players
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18
19 N <- 8

20 active_players <- unique(c(matches$winner_player_id, matches$loser_player_id))
21 top_player_ids <- ranking_data[ranking_data$player_id %in% active_players,]$

player_id[1:N]

22 top_matches <- matches[matches$winner_player_id %in% top_player_ids & matches$
loser_player_id %in% top_player_ids,]

23
24 # Analysis

25 ## Tally matrices

26 ### Helper functions

27 winner_sets_won = function(match_score_string){

28 scores <- strsplit(match_score_string, "␣")[[1]]

29 sets_won <- unlist(lapply(scores, function(x) {

30 r <- strsplit(strsplit(x, "\\(")[[1]][1], "")[[1]]

31 return(r[1] > r[2])

32 }), use.names=FALSE)

33 sets_won[is.na(sets_won)] = TRUE

34 return(sets_won)

35 }

36 v_winner_sets_won = Vectorize(winner_sets_won, vectorize.args = ’match_score_

string’)

37
38
39 ### Tally actual matrices

40 S3 <- matrix(0, nrow=N, ncol=N, dimnames=list(top_player_ids, top_player_ids))

41 S1 <- S3

42 S2 <- S3

43
44 winner_set_outcomes <- v_winner_sets_won(top_matches$match_score_tiebreaks)
45 for (i in seq(length(winner_set_outcomes))) {

46 scores <- winner_set_outcomes[[i]]

47 prev <- scores[-1]

48 curr <- scores[-length(scores)]

49
50 w <- top_matches$winner_player_id[i]
51 l <- top_matches$loser_player_id[i]
52
53 ifelse(scores[1], S3[w,l] <- S3[w,l] + 1, S3[l,w] <- S3[l,w] + 1)

54 ifelse(prev & curr, S1[w,l] <- S1[w,l] + 1, ifelse(prev & !curr, S2[l,w] <- S2[

l,w] + 1, S2[w,l] <- S2[w,l] + 1))

55 }

56
57
58 ## Process tallies

59 convert_to_app_df = function(tally){

60 new_tally <- as.data.frame(as.table(tally))

61 colnames(new_tally) <- c(’w’, ’l’, ’count’)

62 return(new_tally)

63 }

64
65 S1_df <- convert_to_app_df(S1)

66 S2_df <- convert_to_app_df(S2)

67 S3_df <- convert_to_app_df(S3)

68
69
70 ## Negative log-likelihood function

71 bt_likelihood = function(params){

72 coefs <- table(params[1:N])
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73 names(coefs) <- top_player_ids

74
75 theta <- params[N + 1]

76
77 S1_lk <- sum(S1_df$count * log(1 + exp(coefs[S1_df$l] - (coefs[S1_df$w] + theta

))))

78 S2_lk <- sum(S2_df$count * log(1 + exp(coefs[S2_df$l] + theta - coefs[S2_df$w])
))

79 S3_lk <- sum(S3_df$count * log(1 + exp(coefs[S3_df$l] - coefs[S3_df$w])))
80
81 return(S1_lk + S2_lk + S3_lk)

82 }

83
84
85 ## Maximise Negative log-likelihood function

86 start = start = c(1.06, 1.97, 0.191, -0.594, -0.631, -1.72, 0.104, -0.383, 0)

87 res_optim <- optim(par=start, fn=bt_likelihood, gr="BFGS", control=list(maxit=100

0))

88 mles <- res_optim$par
89
90
91 print(paste("status:", ifelse(!res$convergence, "did␣converge", "did␣not␣converge

")))

92 print(paste("theta_hat:", mles[length(mles)]))

93
94 ## Get Fisher information

95 theta <- mles[length(mles)]

96 variance = 0

97 for (i in top_player_ids){

98 for (j in top_player_ids) {

99 if (i != j) {

100 gam_i <- mles[match(i, top_player_ids)]

101 gam_j <- mles[match(j, top_player_ids)]

102
103 variance <- variance - S1[i,j] * (exp(theta + gam_i + gam_j) / (exp(theta +

gam_i) + exp(gam_j)) ^ 2) + S2[i,j] * (exp(theta + gam_i + gam_j) / ((

exp(theta + gam_j) + exp(gam_i)) ^ 2))

104 }

105 }

106 }

5.2 Elo and Glicko Ratings

5.2.1 Fitting the Model

The following fits the Elo and Glicko models onto match data found in the 2017 ATP
tennis data set. This produces the rankings as found in Table 2.3 and Table 2.5.

1 # Setup

2 ## Load data as previously

3 ## Libraries

4 library("PlayerRatings")

5
6 # Simulate calculations of ratings

7 ## Prepare data frame

8 matches <- match_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_id’)]

9 matches$winner <- rep(1, length(matches[,1]))

10
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11 ## Assert four tournaments per rating period

12 num_tournaments <- length(unique(matches$tourney_order))
13 rating_periods <- num_tournaments %/% 4

14 matches$tourney_order <- rep(1:rating_periods, each=(length(matches$tourney_order
) %/% rating_periods) + 1)[1:length(matches$tourney_order)]

15
16 ## Get dataframes of players and their ratings

17 ### Elo ratings

18 elo_res <- elo(matches, kfac=31.41, as_data_frame=TRUE)

19 ### Glicko ratings

20 glicko_res <- glicko2(matches, init=c(2200, 146.0352), cval= 13.3277, as_data_

frame=TRUE)

21 ### Glicko2 ratings

22 glicko2_res <- glicko2(matches, init=c(2200, 151.27494073, 0.07491802), as_data_

frame=TRUE)

5.2.2 Dynamic Elo K-factor

The following simulates the Elo model under the dynamic K-factor by Kovalchik (2020)
under the ATP tennis data set. This produces the ranking in Table 2.4.

1 # Simulation setup

2 ## Get all relevant players

3 all_players <- unique(c(match_data$winner_player_id, match_data$loser_player_id))
4 num_players <- length(all_players)

5
6 ## Give all players a starting rating

7 start_rating <- 2200

8 ratings <- rep(start_rating, num_players)

9
10 # Dynamic K simulation

11 ## Helper for counting games

12 replace_col = function(player, game_count, match_df=matches){

13 if (match_df$winner_player_id == player) {

14 match_df$winner_count <- game_count

15 } else if (match_df$loser_player_id == player) {

16 match_df$loser_count <- game_count

17 }

18 }

19 vreplace_col = Vectorize(replace_col, vectorize.args=’match_df’)

20
21 ## Setup for fitting

22 K <- 800

23 start_rating <- 2200

24 matches <- match_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_id’)]

25
26 all_players <- unique(c(matches$winner_player_id, matches$loser_player_id))
27 num_players <- length(all_players)

28 ratings <- rep(start_rating, num_players)

29
30 ### Count number of games played

31 total_games_played <- length(matches[,1])

32 matches$winner_games_played <- rep(0, total_games_played)

33 matches$loser_games_played <- rep(0, total_games_played)

34
35 for (player in all_players){

36 relevant_matches <- matches[matches$winner_player_id == player | matches$
loser_player_id == player,]

37 num_games_played <- length(relevant_matches[,1])

51



38
39 matches$winner_games_played <- ifelse(matches$winner_player_id == player, seq

(1, num_games_played), matches$winner_games_played)
40 matches$loser_games_played <- ifelse(matches$loser_player_id == player, seq(1,

num_games_played), matches$loser_games_played)
41 }

42
43 ### Assert four tournaments per rating period

44 num_tournaments <- length(unique(matches$tourney_order))
45 rating_periods <- num_tournaments %/% 4

46 matches$tourney_order <- rep(1:rating_periods, each=(length(matches$tourney_order
) %/% rating_periods) + 1)[1:length(matches$tourney_order)]

47
48 ### Simulate matches and rating fluctuations while updating ratings only at the

end of each rating period

49 for (i in seq(rating_periods)) {

50 matches_in_period <- matches[matches$tourney_order == i,]

51 updates <- as.data.frame(cbind(all_players, rep(0, length(all_players))))

52 updates[,2] <- sapply(updates[,2], as.numeric)

53 colnames(updates) <- c(’player_id’, ’score_change’)

54 for (i in seq(length(matches_in_period[,1]))){

55 row <- matches_in_period[i,]

56 A <- row$winner_player_id
57 B <- row$loser_player_id
58
59 R_A <- ratings[which(all_players == A)]

60 R_B <- ratings[which(all_players == B)]

61
62 E_A <- 1 / (1 + 10^((R_B - R_A) / 400))

63 E_B <- 1 - E_A

64
65 K_A <- kfac / (row$winner_games_played + 5) ^ 0.4

66 K_B <- kfac / (row$loser_games_played + 5) ^ 0.4

67
68 updates$score_change[updates$player_id == A] <- updates$score_change[

updates$player_id == A] + K_A * (1 - E_A)

69 updates$score_change[updates$player_id == B] <- updates$score_change[
updates$player_id == B] + K_B * (0 - E_B)

70 }

71 ratings <- ratings + updates[match(all_players, updates$player_id),]$score_
change

72 }

73
74 ## Rank players based on their rating

75 player_rankings <- as.data.frame(cbind(all_players, ratings))

76 player_rankings <- player_rankings %>% arrange(desc(ratings))

77 player_names <- player_data$player_slug[match(player_rankings$all_players, player

_data$player_id)]
78
79 player_rankings <- as.data.frame(cbind(player_names, player_rankings$all_players,

player_rankings$ratings))
80
81 colnames(player_rankings) <- c(’player_slug’, ’player_id’, ’ELO␣rating’)

82 print(player_rankings)
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5.2.3 Plotting Trends

The following produces the rating differential versus probability of winning trend in Figure
2.4 as well as an unused trend for the Glicko rating scheme.

1 # Libraries

2 library("ggplot2")

3 library("dplyr")

4
5 # Draw scatter-plot along with predicted curve

6 ## Convert data into a list of points

7 win_lose_tally <- count(match_data, winner_player_id, loser_player_id)

8
9 ordered_partition <- win_lose_tally[win_lose_tally$winner_player_id < win_lose_

tally$loser_player_id,]
10 ordered_partition[,4] <- rep(0, length(ordered_partition[,1]))

11 colnames(ordered_partition) <- c(’p1’, ’p2’, ’w1’, ’w2’)

12
13 swapped_partition <- win_lose_tally[win_lose_tally$winner_player_id > win_lose_

tally$loser_player_id,]
14 swapped_partition <- swapped_partition[c(’loser_player_id’, ’winner_player_id’, ’

n’)]

15 swapped_partition[,4] <- rep(0, length(swapped_partition[,1]))

16 colnames(swapped_partition) <- c(’p1’, ’p2’, ’w2’, ’w1’)

17
18 tally <- aggregate(.~p1+p2, data=rbind(ordered_partition, swapped_partition), sum

)

19
20 ## Get rating diff vs % win graph

21 ### Helper function

22 get_rating_win_points = function(res) {

23 r_p1 <- res[[1]]$Rating[match(tally$p1, res[[1]]$Player)]
24 r_p2 <- res[[1]]$Rating[match(tally$p2, res[[1]]$Player)]
25
26 points_avg <- as.data.frame(cbind(as.numeric(as.vector(abs(r_p1 - r_p2))),

ifelse(r_p1 > r_p2, tally$w1, tally$w2), ifelse(r_p1 > r_p2, tally$w2,
tally$w1)))

27
28 points_avg$V1 <- cut(points_avg$V1, breaks=seq(0, 1000, 20), labels=seq(5, 995,

20))

29 points_avg <- aggregate(.~V1, data=points_avg, sum)

30 points_avg <- as.data.frame(cbind(as.numeric(as.vector(points_avg$V1)), points_

avg$V2 / (points_avg$V2 + points_avg$V3)))
31 colnames(points_avg) <- c(’rating_diff’, ’p_win’)

32
33 neg_points_avg <- as.data.frame(cbind(-points_avg$rating_diff, 1- points_avg$p_

win))

34 colnames(neg_points_avg) <- c(’rating_diff’, ’p_win’)

35 points <- rbind(points_avg, neg_points_avg)

36
37 return(points)

38 }

39
40 ## Plot average per rating bin

41 elo_pred <- function(x) 1 / (1 + 10 ^ (-x / 400))

42
43 elo_res <- elo(matches, kfac=31.41, as_data_frame=TRUE)

44 points <- get_rating_win_points(elo_res)

45
46 ggplot(points, aes(x=rating_diff, y=p_win)) + geom_point() + stat_function(fun =
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elo_pred) + xlab(’Rating␣Difference␣against␣Opponent’) + ylab(’Probability␣of

␣Winning’)

47
48 ## Plot Glicko scatter-plot

49 points <- get_rating_win_points(glicko_res)

50
51 ggplot(points, aes(x=rating_diff, y=p_win)) + geom_point()

5.2.4 Parameter Estimation

Elo Static K

The following calculates the estimate for the static value for K maximising the log-likelihood
of the 10-fold cross-validation procedure used in producing Table 2.3 and the results in
chapter 4. We yield a value of K = 31.41

1 # Best Elo K-factor

2 ## Likelihood function

3 library(’PlayerRatings’)

4 elolikelihood = function(training_data, test_data, kfac=27){

5 data_df <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

6 data_df$win <- rep(1, length(data_df[,1]))

7
8 num_tournaments <- length(unique(data_df$tourney_order))
9 rating_periods <- num_tournaments %/% 4

10 data_df$tourney_order <- rep(1:rating_periods, each=(length(data_df$tourney_
order) %/% rating_periods) + 1)[1:length(data_df$tourney_order)]

11
12 elo_res <- elo(data_df, kfac=kfac, as_data_frame=TRUE)

13 r_A <- elo_res[[1]]$Rating[match(test_data[[1]]$winner_player_id, elo_res[[1]]$
Player)]

14 r_B <- elo_res[[1]]$Rating[match(test_data[[1]]$loser_player_id, elo_res[[1]]$
Player)]

15
16 l_prob <- sum(log(ifelse(is.na(r_A) | is.na(r_B), 1, 10^(r_A/400) / (10^(r_A/40

0) + 10^(r_B/400)))))

17 return(l_prob)

18 }

19 elo_cv_l = function(kfac){

20 K <- 10

21 matches <- match_data[c(’winner_player_id’, ’loser_player_id’, ’tourney_order’)

]

22 data_partitions <- split(matches, seq(K))

23
24 num_tournaments <- length(unique(matches$tourney_order))
25 rating_periods <- num_tournaments %/% 4

26 matches$tourney_order <- rep(1:rating_periods, each=(length(matches$tourney_
order) %/% rating_periods) + 1)[1:length(matches$tourney_order)]

27
28 total_l_prob <- 0

29 for(i in seq(K)){

30 test_data <- data_partitions[i]

31 training_data <- dplyr::bind_rows(data_partitions[-i])

32 total_l_prob <- total_l_prob + elolikelihood(training_data, test_data, kfac=

kfac)

33 }

34 l_prob <- total_l_prob / K

35 return(-l_prob)
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36 }

37
38 ## Optimise CV likelihood

39 res <- optim(par=c(32), elo_cv_l, method="Nelder-Mead", upper=c(800), lower=c(1))

40 res

Glicko σ and ν

The following calculates estimates for the initial rating deviation σ and rating deviation
increase per unit time ν according to the method of minimising the total predictive
discrepancy by Glickman (1999). We make use of the Nelder-Mead simplex algorithm as
suggested. This yields the aforementioned σ̂ = 350 and ν̂ = 254.

1 # Parameter estimation

2 ## Likelihood function

3 glicko_l = function(matches, status, rating=2200, sigma=300, nu=15) {

4 data_df <- matches[c(’tourney_order’, ’winner_player_id’, ’loser_player_id’)]

5 data_df$win <- rep(1, length(data_df[,1]))

6 glicko_res <- glicko(data_df, status=status, init=c(rating, sigma), cval=nu, as

_data_frame=TRUE, sort=FALSE)

7
8 mu_i <- glicko_res[[1]]$Rating[match(data_df$winner_player_id, glicko_res[[1]]$

Player)]

9 mu_j <- glicko_res[[1]]$Rating[match(data_df$loser_player_id, glicko_res[[1]]$
Player)]

10 sigma_i <- glicko_res[[1]]$Deviation[match(data_df$winner_player_id, glicko_res

[[1]]$Player)]
11 sigma_j <- glicko_res[[1]]$Deviation[match(data_df$loser_player_id, glicko_res

[[1]]$Player)]
12
13 q <- log(10) / 400

14 g_RD <- 1 / sqrt(1 + 3 * q^2 * (sigma_i^2 + sigma_j^2) / pi^2)

15 p_ij <- 1 / (1 + 10 ^ (- g_RD * (mu_i - mu_j) / 400))

16
17 l_prob <- -sum(log(p_ij))

18 return(list(l_prob, glicko_res))

19 }

20
21 ## Optim function argument

22 glicko_param_l = function(param) {

23 sigma <- param[1]

24 nu <- param[2]

25 tournaments_per_period <- 4

26 tournaments <- unique(match_data$tourney_order)
27 partitions <- split(tournaments, seq(length(tournaments) %/% tournaments_per_

period))

28
29 log_l <- 0

30 status <- NULL

31 for (i in seq(length(partitions))) {

32 matches_in_period <- match_data[match_data$tourney_order %in% partitions[[i

]],]

33 matches_in_period$tourney_order <- i

34 res <- glicko_l(matches=matches_in_period, status=status, sigma=sigma, nu=nu)

35 log_l <- log_l + res[[1]]

36 status <- res[[2]][["ratings"]]

37 }

38 return(log_l)

39 }
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40
41 ## Optimise

42 res <- optim(par=c(300, 15), glicko_param_l, method="Nelder-Mead", upper=c(350, 1

000), lower=c(1, 1))

43 res

The following produces the estimates used in fitting the Glicko model as in Table 2.5
and results in chapter 4 by maximising the full log-likelihood in a 10-fold cross-validation
procedure. This yields the utilised σ̂ = 146.0352 and ν̂ = 13.3277.

1 ## Cross validation likelihood

2 glickolikelihood = function(training_data, test_data, sigma, nu, use_glicko2=

FALSE, starting=2200, volatility=0.15, tau=1.2, rdmax=350){

3 data_df <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

4 data_df$win <- rep(1, length(data_df[,1]))

5
6 num_tournaments <- length(unique(data_df$tourney_order))
7 rating_periods <- num_tournaments %/% 4

8 data_df$tourney_order <- rep(1:rating_periods, each=(length(data_df$tourney_
order) %/% rating_periods) + 1)[1:length(data_df$tourney_order)]

9
10 glicko_res <- ifelse(use_glicko2, glicko2(data_df, init=c(starting, sigma,

volatility), tau=tau), glicko(data_df, init=c(starting, sigma), cval=nu,

rdmax=rdmax, as_data_frame=TRUE))

11
12 r_A <- glicko_res[[1]]$Rating[match(test_data[[1]]$winner_player_id, glicko_res

[[1]]$Player)]
13 r_B <- glicko_res[[1]]$Rating[match(test_data[[1]]$loser_player_id, glicko_res

[[1]]$Player)]
14 RD_B <- glicko_res[[1]]$Deviation[match(test_data[[1]]$loser_player_id, glicko_

res[[1]]$Player)]
15
16 q <- log(10) / 400

17 g_RD <- 1 / sqrt(1 + 3 * q^2 * RD_B^2 / pi^2)

18 E_A <- 1 / (1 + 10 ^ (- g_RD * (r_A - r_B) / 400))

19
20 l_prob <- sum(log(ifelse(is.na(r_A) | is.na(r_B), 1, E_A)))

21 return(l_prob)

22 }

23 glicko_cv_l = function(sigma, nu){

24 K <- 10

25 matches <- match_data[c(’winner_player_id’, ’loser_player_id’, ’tourney_order’)

]

26 data_partitions <- split(matches, seq(K))

27
28 num_tournaments <- length(unique(matches$tourney_order))
29 rating_periods <- num_tournaments %/% 4

30 matches$tourney_order <- rep(1:rating_periods, each=(length(matches$tourney_
order) %/% rating_periods) + 1)[1:length(matches$tourney_order)]

31
32 total_l_prob <- 0

33 for(i in seq(K)){

34 test_data <- data_partitions[i]

35 training_data <- dplyr::bind_rows(data_partitions[-i])

36 total_l_prob <- total_l_prob + glickolikelihood(training_data, test_data,

sigma, nu)

37 }

38 l_prob <- total_l_prob / K

39 return(l_prob)
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40 }

41 glicko_cv_param_l = function(param) {

42 return(-glicko_cv_l(param[1], param[2]))

43 }

44
45 ## Optimise CV likelihood

46 res <- optim(par=c(300, 15), glicko_cv_param_l, method="Nelder-Mead", upper=c(350

, 1000), lower=c(1, 1))

47 res

Log-likelihood Heat Map for Glicko Parameters

The following produces the heat map of the log-likelihood as parameters are varied in the
Glicko model as in Figure 2.5.

1 # Visualise heat map

2 ## Populate matrix

3 s_count <- 20

4 n_count <- 20

5 sigmas <- seq(50, 300, length=s_count)

6 nus <- seq(1, 30, length=n_count)

7
8 nu_sigma_matrix <- matrix(0, nrow=n_count, ncol=s_count)

9 for (i in seq(s_count)){

10 sigma <- sigmas[i]

11 for (j in seq(n_count)){

12 nu <- nus[j]

13 nu_sigma_matrix[i, j] <- -glicko_cv_param_l(c(sigma, nu))

14 }

15 print(paste(100 * (i / s_count), ’%’))

16 }

17
18 ## Create heat map

19 library(’latex2exp’)

20 library(’ggplot2’)

21 library(’viridis’)

22 vals <- data.frame(x=rep(nus, each=s_count), y=rep(sigmas, length(n_count)), z=as

.numeric(nu_sigma_matrix))

23 colnames(vals)[3] <- "Log-likelihood"

24
25 my_breaks <- c(-1490, -1495, -1496)

26 v <- ggplot(vals, aes(x, y, z=‘Log-likelihood‘)) + geom_raster(aes(fill=‘Log-

likelihood‘)) + xlab(TeX(’Rating␣Deviation␣Increase␣Over␣Time␣$(\\nu)$’)) +

ylab(TeX(’Starting␣Deviation␣$(\\sigma_{0})$’)) + scale_fill_continuous(type

= "viridis")

27 v

5.3 Fickle Fan Model

5.3.1 Fitting the Model

The following sets up the transition matrix of the Markov chain as described and runs
either a random walk or a simulation of assigning 1000 players at each state. This produces
the rankings and proportion of fans at Table 2.7.

1 # Setup

2 ## Load data as previously

3 ## Actual ranking
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4 actual_ranking <- ranking_data[c(’player_slug’, ’ranking_points’)]

5
6 # Tally for wins and losses

7 ## Get top players

8 top_player_ids <- ranking_data$player_id[1:10]
9 num_players <- length(top_player_ids)

10
11 ## Filter out only relevant matches

12 match_data <- match_data[match_data$winner_player_id %in% top_player_ids & match_

data$loser_player_id %in% top_player_ids,]

13 matches <- match_data[,c(’winner_player_id’, ’loser_player_id’)]

14
15 ## Tally number of games won/lost

16 tally <- dplyr::count(matches, winner_player_id, loser_player_id)

17
18 top_player_ids <- sort(unique(c(as.character(tally$winner_player_id), as.

character(tally$loser_player_id))))
19 #num_players <- length(top_player_ids)

20
21 tally_matrix <- matrix(0, nrow=num_players, ncol=num_players, dimnames = list(top

_player_ids,top_player_ids))

22 tally_matrix[as.matrix(tally[,c(’winner_player_id’, ’loser_player_id’)])] <-

tally[,’n’]

23
24 ## Get Transition Matrix

25 prop <- 0.01

26 games_lost <- colSums(tally_matrix)

27 games_won <- rowSums(tally_matrix)

28 prob_win <- games_won / (games_won + games_lost)

29 trans_matrix <- diag(prob_win) + t(tally_matrix) * (1 - prob_win) / games_lost

30
31 for (i in seq(num_players)) {

32 if (sum(is.na(trans_matrix)) > 0) {

33 trans_matrix[i,] <- rep(1 / num_players, num_players)

34 } else {

35 num_havent_lost <- sum(trans_matrix[i,] == 0)

36 prob_arb_move <- sum(trans_matrix[i,]) * prop / num_havent_lost

37 trans_matrix[i,][trans_matrix[i,] == 0] <- prob_arb_move

38 trans_matrix[i,] <- trans_matrix[i,] / sum(trans_matrix[i,])

39 }

40 }

41
42 ## Run simulation using random walk of one fan

43 iter_count <- 1

44 visit_counts <- table(colnames=top_player_ids) - 1

45 curr_state <- sample(top_player_ids, 1)

46 population <- table(colnames=top_player_ids) - 1

47
48 for(i in seq(iter_count)){

49 next_state <- sample(colnames(trans_matrix), prob=trans_matrix[,curr_state],

size=1, replace=TRUE)

50 visit_counts[next_state] <- visit_counts[next_state] + 1

51 }

52
53 # Display results

54 distrib_vector <- as.vector(visit_counts)

55 order <- order(distrib_vector, decreasing=TRUE)

56 fan_count <- data.frame(top_player_ids[order], distrib_vector[order])

57 colnames(fan_count) <- c(’colnames’, ’Freq’)
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58 player_slugs <- player_data$player_slug[match(fan_count$colnames, player_data$
player_id)]

59
60 pred_ranking <- as.data.frame(cbind(player_slugs, fan_count$Freq, fan_count$Freq

/ sum(population)))

61 colnames(pred_ranking) <- c(’player_slug’, ’fans’, ’%␣of␣fans’)

62 print(pred_ranking)

63
64 ## Run simulation of 1000 players at each state

65 fans_per_player <- 1000

66 iter_count <- 10000

67
68 # Assign people to each person

69 population <- table(colnames=top_player_ids) - 1 + fans_per_player

70 counter <- 0

71 for(i in seq(iter_count)){

72 # Set table to 0

73 movement <- table(colnames=top_player_ids) - 1

74
75 for(player in seq(num_players)){

76 num_fans <- population[[player]]

77 new_player <- sample(colnames(trans_matrix), prob=trans_matrix[player,], size

=num_fans, replace=TRUE)

78 # Tally how many people move to which player

79 movement <- movement + table(c(new_player, top_player_ids)) - 1

80 }

81
82 # Move the people around

83 population <- movement

84 if (i %% 1000 == 0) {

85 counter <- counter + 1

86 print(paste(10 * counter, ’%’))

87 }

88 }

89
90 # Display results

91 fan_count <- as.data.frame(sort(population, decreasing=TRUE))

92 player_slugs <- player_data$player_slug[match(fan_count$colnames, player_data$
player_id)]

93
94 tpred_ranking <- as.data.frame(cbind(player_slugs, fan_count$Freq, fan_count$Freq

/ sum(population)))

95 colnames(tpred_ranking) <- c(’player_slug’, ’fans’, ’%␣of␣fans’)

96 print(tpred_ranking)

97
98 ## Get Steady state

99 library(’expm’)

100 steady_state <- (trans_matrix %^% 1000)[1,]

5.3.2 Visualising States Graph

The following creates an adjacency list used to encode the Markov state diagram in Figure
2.6. Unused is the a state diagram created in R.

1 # Get latex adjacency lists

2 top_matrix <- trans_matrix

3
4 output <- "{"

5 for(row in seq(length(top_matrix[,1]))){
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6 row_str <- paste("{", format(round(top_matrix[1, row], 3), nsmall=2))

7 for (col in seq(length(top_matrix[row,]) - 1)){

8 row_str <- paste(row_str, ",", format(round(top_matrix[col+1,row], 3), nsmall

=3))

9 }

10 output <- paste(output, row_str, "},")

11 }

12 output <- paste(output, "}")

13
14 # Plot Markov state graph in R

15 ## Libraries

16 library(’igraph’)

17 library(’ggplot2’)

18 library(’viridis’)

19
20 ## Plotting the graph

21 n <- num_players

22 g <- graph_from_adjacency_matrix(tally_matrix + diag(n), weighted=TRUE, diag=TRUE

)

23 la <- layout.circle(g)

24
25 col_n <- 12

26 colors <- viridis(col_n)

27
28 min_vdeg <- min(degree(g))

29 max_vdeg <- max(degree(g))

30 V(g)$color <- colors[as.integer(col_n * (degree(g) - min_vdeg)/(max_vdeg - min_

vdeg))]

31
32 min_edeg <- min(E(g)$weight)
33 max_edeg <- max(E(g)$weight)
34 E(g)$color <- colors[as.integer(col_n * (E(g)$weight - min_edeg)/(max_edeg - min_

edeg))]

35
36 plot.igraph(g, layout=la,vertex.size=3, vertex.label=NA, edge.arrow.size=0.1,

edge.width=0.1)

5.3.3 Optimising the proportionality constant for ghost links

Briefly, we mentioned the use of an arbitrarily set proportionality constant p = 0.01 in
deriving the transition probabilities. An attempt to optimise such parameter is given below,
though it is noted that it is computationally expensive and was therefore unused.

1 # Setup

2 ## Load cross-validation functions (one including the markovlikelihood function)

3
4 # Best Markov Proportionality Constant

5 markov_cv_l = function(prop){

6 K <- 10

7 matches <- match_data[c(’winner_player_id’, ’loser_player_id’, ’tourney_order’)

]

8 data_partitions <- split(matches, seq(K))

9
10 num_tournaments <- length(unique(matches$tourney_order))
11 rating_periods <- num_tournaments %/% 4

12 matches$tourney_order <- rep(1:rating_periods, each=(length(matches$tourney_
order) %/% rating_periods) + 1)[1:length(matches$tourney_order)]

13
14 total_l_prob <- 0
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15 for(i in seq(K)){

16 test_data <- data_partitions[i]

17 training_data <- dplyr::bind_rows(data_partitions[-i])

18 total_l_prob <- total_l_prob + markovlikelihood(training_data, test_data,

prop=prop, iter=20)

19 }

20 l_prob <- total_l_prob / K

21 return(l_prob)

22 }

23
24 ## Optimise CV likelihood

25 res <- optim(par=c(0.01), markov_cv_l, method="BFGS", upper=c(1), lower=c(0))

26 res

5.4 Model Comparisons

5.4.1 Spearman’s Rank Correlation Coefficient

The following produces the Spearman’s rank correlation coefficient results of each model as
in Table 4.1. We note that we vary the parameter N at the start to consider coefficients for
sample sizes: ten and 100. Another note is that the Bayesian extensions to the BT model
were tested by simply calling the helper functions after their definitions in a separate file.

1 # Setup

2 ## Load data as previously

3 ## Retrieve the actual rankings

4 actual_ranking <- ranking_data[c(’player_id’, ’player_slug’, ’rank_number’)]

5
6 # Specify how many players to consider

7 ## Pre-process matches

8 N <- 10

9 matches <- match_data[c(’winner_player_id’, ’loser_player_id’, ’tourney_order’)]

10 active_players <- unique(c(matches$winner_player_id, matches$loser_player_id))
11 top_player_ids <- ranking_data[ranking_data$player_id %in% active_players,]$

player_id[1:N]

12 top_matches <- matches[matches$winner_player_id %in% top_player_ids & matches$
loser_player_id %in% top_player_ids,]

13
14 # Functions for getting rankings

15 ## Bradley-Terry

16 library(’BradleyTerryScalable’)

17 btranking = function(training_data, a=1.1){

18 win_lose_tally <- dplyr::count(training_data, winner_player_id, loser_player_id

)

19 # Fit the BT model

20 test_btdata <- btdata(win_lose_tally)

21 test_btfit <- btfit(test_btdata, a=a)

22 test_id_coef_df <- coef(test_btfit, as_df=TRUE)[c(’item’, ’coef’)]

23 return(test_id_coef_df$item)
24 }

25
26 ## Elo

27 library(’PlayerRatings’)

28 eloranking = function(training_data, kfac=31.41){

29 data_df <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

30 data_df$win <- rep(1, length(data_df[,1]))

31
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32 num_tournaments <- length(unique(data_df$tourney_order))
33 rating_periods <- num_tournaments %/% 4

34 data_df$tourney_order <- rep(1:rating_periods, each=(length(data_df$tourney_
order) %/% rating_periods) + 1)[1:length(data_df$tourney_order)]

35
36 elo_res <- elo(data_df, kfac=kfac, as_data_frame=TRUE)

37 return(elo_res[[1]]$Player)
38 }

39
40 ## Glicko

41 library(’PlayerRatings’)

42 glickoranking = function(training_data, sigma=146.035, nu= 13.328, starting=2200,

rdmax=350){

43 data_df <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

44 data_df$win <- rep(1, length(data_df[,1]))

45
46 num_tournaments <- length(unique(data_df$tourney_order))
47 rating_periods <- num_tournaments %/% 4

48 data_df$tourney_order <- rep(1:rating_periods, each=(length(data_df$tourney_
order) %/% rating_periods) + 1)[1:length(data_df$tourney_order)]

49
50 glicko_res <- glicko(data_df, init=c(starting, sigma), cval=nu, rdmax=rdmax, as

_data_frame=TRUE)

51 return(glicko_res[[1]]$Player)
52 }

53
54 ## Glicko2

55 library(’PlayerRatings’)

56 glicko2ranking = function(training_data, sigma=151.27, vol=0.075, tau=0.3,

starting=2200, rdmax=350){

57 data_df <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

58
59 num_tournaments <- length(unique(data_df$tourney_order))
60 rating_periods <- num_tournaments %/% 4

61 data_df$tourney_order <- rep(1:rating_periods, each=(length(data_df$tourney_
order) %/% rating_periods) + 1)[1:length(data_df$tourney_order)]

62
63 data_df$win <- rep(1, length(data_df[,1]))

64 glicko_res <- glicko2(data_df, init=c(starting, sigma, vol), tau=tau, rdmax=

rdmax, as_data_frame=TRUE)

65 return(glicko_res[[1]]$Player)
66 }

67
68 ## Markov

69 library(’expm’)

70 markovranking = function(training_data, prop=0.01){

71 # Tally number of games won/lost

72 tally <- dplyr::count(training_data, winner_player_id, loser_player_id)

73
74 player_ids <- sort(unique(c(as.character(tally$winner_player_id), as.character(

tally$loser_player_id))))
75 num_players <- length(player_ids)

76
77 tally_matrix <- matrix(0, nrow=num_players, ncol=num_players, dimnames = list(

player_ids, player_ids))

78 tally_matrix[as.matrix(tally[,c(’winner_player_id’, ’loser_player_id’)])] <-

tally[,’n’]
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79
80 # Get transition matrix

81 games_lost <- colSums(tally_matrix)

82 games_won <- rowSums(tally_matrix)

83 prob_win <- games_won / (games_won + games_lost)

84 trans_matrix <- diag(prob_win) + t(tally_matrix) * (1 - prob_win) / games_lost

85
86 for (i in seq(num_players)) {

87 if (sum(is.na(trans_matrix)) > 0) {

88 trans_matrix[i,] <- rep(1 / num_players, num_players)

89 } else {

90 num_havent_lost <- sum(trans_matrix[i,] == 0)

91 prob_arb_move <- sum(trans_matrix[i,]) * prop / num_havent_lost

92 trans_matrix[i,][trans_matrix[i,] == 0] <- prob_arb_move

93 trans_matrix[i,] <- trans_matrix[i,] / sum(trans_matrix[i,])

94 }

95 }

96
97 # Calculate steady state

98 steady_state <- (trans_matrix %^% 1000)[1,]

99
100 return(player_ids[order(steady_state, decreasing=TRUE)])

101 }

102
103 # Spearman’s Rank Coefficient

104 spearmans = function(actual, pred){

105 n <- length(pred)

106 diff_ranks <- c()

107 for(i in seq(n)){

108 player_id <- pred[i]

109 rank <- which(actual == player_id)

110 diff_ranks <- c(diff_ranks, rank - i)

111 }

112 diff_sq <- sum(diff_ranks^2)

113
114 p_coeff <- 1 - 6 * diff_sq / (n * (n^2 - 1))

115 return(p_coeff)

116 }

117
118 comparison_methods = function(actual, ranking, rank_fn){

119 pred <- rank_fn(actual)

120 # Spearmans

121 rho <- spearmans(ranking, pred)

122 n <- length(ranking)

123 rho_p_val <- 2 * pt(q=rho * sqrt(n - 2)/sqrt(1 - rho^2), df = n - 2, lower.tail

= FALSE)

124 paste("Spearmans:", rho, "p-value:", rho_p_val)

125 }

126
127 print_spearman_results = function(ranking, pred){

128 rho <- spearmans(ranking, pred)

129 n <- length(ranking)

130 rho_p_val <- 2 * pt(q=rho * sqrt(n - 2)/sqrt(1 - rho^2), df = n - 2, lower.tail

= FALSE)

131 paste("Spearmans:", rho, "p-value:", rho_p_val)

132 }

133
134 rel_matches <- top_matches

135 rel_ranking <- top_player_ids
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136 comparison_methods(rel_matches, rel_ranking, rank_fn=btranking)

137 comparison_methods(rel_matches, rel_ranking, rank_fn=eloranking)

138 comparison_methods(rel_matches, rel_ranking, rank_fn=glickoranking)

139 comparison_methods(rel_matches, rel_ranking, rank_fn=glicko2ranking)

140 comparison_methods(rel_matches, rel_ranking, rank_fn=markovranking)

5.4.2 Brier Score

The following produces the Brier score results of each model as in Table 4.2. A note once
again is that the Bayesian extension to the BT model with different prior distributions
were tested by calling the helper functions written below in their respective file.

1 # Functions for the likelihood of matches

2 ## Bradley-Terry

3 library(’BradleyTerryScalable’)

4 bt_indv_likelihood = function(training_data, test_data, a=1.5){

5 win_lose_tally <- dplyr::count(training_data, winner_player_id, loser_player_id

)

6 # Fit the BT model

7 test_btdata <- btdata(win_lose_tally)

8 test_btfit <- btfit(test_btdata, a=a)

9 test_id_coef_df <- coef(test_btfit, as_df=TRUE)[c(’item’, ’coef’)]

10
11 ## Evaluate probability

12 p_i <- exp(test_id_coef_df$coef[match(test_data$winner_player_id, test_id_coef_

df$item)])
13 p_j <- exp(test_id_coef_df$coef[match(test_data$loser_player_id, test_id_coef_

df$item)])
14
15 l_prob <- ifelse(is.na(p_j), 0.5, p_i / (p_i + p_j))

16 return(l_prob)

17 }

18
19 ## Elo

20 library(’PlayerRatings’)

21 elo_indv_likelihood = function(training_data, test_data, kfac=27){

22 data_df <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

23 data_df$win <- rep(1, length(data_df[,1]))

24
25 num_tournaments <- length(unique(data_df$tourney_order))
26 rating_periods <- num_tournaments %/% 4

27 data_df$tourney_order <- rep(1:rating_periods, each=(length(data_df$tourney_
order) %/% rating_periods) + 1)[1:length(data_df$tourney_order)]

28
29 elo_res <- elo(data_df, kfac=kfac, as_data_frame=TRUE)

30 r_A <- elo_res[[1]]$Rating[match(test_data$winner_player_id, elo_res[[1]]$
Player)]

31 r_B <- elo_res[[1]]$Rating[match(test_data$loser_player_id, elo_res[[1]]$Player
)]

32
33 l_prob <- ifelse(is.na(r_A) | is.na(r_B), 0.5, 10^(r_A/400) / (10^(r_A/400) + 1

0^(r_B/400)))

34 return(l_prob)

35 }

36
37 ## Glicko

38 library(’PlayerRatings’)

64



39 glicko_indv_likelihood = function(training_data, test_data, use_glicko2=FALSE,

sigma=300, nu=15, starting=2200, rdmax=350, vol=0.15, tau=1.5){

40 data_df <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

41 data_df$win <- rep(1, length(data_df[,1]))

42
43 num_tournaments <- length(unique(data_df$tourney_order))
44 rating_periods <- num_tournaments %/% 4

45 data_df$tourney_order <- rep(1:rating_periods, each=(length(data_df$tourney_
order) %/% rating_periods) + 1)[1:length(data_df$tourney_order)]

46
47 glicko_res <- ifelse(use_glicko2, glicko2(data_df, init=c(starting, sigma, vol)

, tau=tau, rdmax=rdmax, as_data_frame=TRUE), glicko(data_df, init=c(

starting, sigma), cval=nu, rdmax=rdmax, as_data_frame=TRUE))

48
49 r_A <- glicko_res[[1]]$Rating[match(test_data$winner_player_id, glicko_res[[1

]]$Player)]
50 r_B <- glicko_res[[1]]$Rating[match(test_data$loser_player_id, glicko_res[[1]]$

Player)]

51 RD_B <- glicko_res[[1]]$Deviation[match(test_data$loser_player_id, glicko_res[[

1]]$Player)]
52
53 q <- log(10) / 400

54 g_RD <- 1 / sqrt(1 + 3 * q^2 * RD_B^2 / pi^2)

55 E_A <- 1 / (1 + 10 ^ (- g_RD * (r_A - r_B) / 400))

56
57 l_prob <- (ifelse(is.na(r_A) | is.na(r_B), 0.5, E_A))

58 return(l_prob)

59 }

60
61 ## Markov

62 library(’expm’)

63 markov_indv_likelihood = function(training_data, test_data, rank_data){

64 # Tally number of games won/lost

65 tally <- dplyr::count(training_data, winner_player_id, loser_player_id)

66
67 player_ids <- sort(unique(c(as.character(tally$winner_player_id), as.character(

tally$loser_player_id))))
68 num_players <- length(player_ids)

69
70 tally_matrix <- matrix(0, nrow=num_players, ncol=num_players, dimnames = list(

player_ids, player_ids))

71 tally_matrix[as.matrix(tally[,c(’winner_player_id’, ’loser_player_id’)])] <-

tally[,’n’]

72
73 # Get transition matrix

74 games_lost <- colSums(tally_matrix)

75 games_won <- rowSums(tally_matrix)

76 prob_win <- games_won / (games_won + games_lost)

77 trans_matrix <- diag(prob_win) + t(tally_matrix) * (1 - prob_win) / games_lost

78
79 for (i in seq(num_players)) {

80 if (sum(is.na(trans_matrix)) > 0) {

81 trans_matrix[i,] <- rep(1 / num_players, num_players)

82 } else {

83 num_havent_lost <- sum(trans_matrix[i,] == 0)

84 prob_arb_move <- sum(trans_matrix[i,]) * prop / num_havent_lost

85 trans_matrix[i,][trans_matrix[i,] == 0] <- prob_arb_move

86 trans_matrix[i,] <- trans_matrix[i,] / sum(trans_matrix[i,])
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87 }

88 }

89
90 # Calculate steady state

91 steady_state <- (trans_matrix %^% 1000)[1,]

92
93 # Calculate likelihood

94 test_matches <- test_data[test_data$winner_player_id %in% player_ids & test_

data$loser_player_id %in% player_ids,][,c(’winner_player_id’, ’loser_player

_id’)]

95
96 winner_fan_pct <- steady_state[match(test_matches$winner_player_id, player_ids)

]

97 loser_fan_pct <- steady_state[match(test_matches$loser_player_id, player_ids)]

98
99 likelihood <- ifelse(winner_fan_pct + loser_fan_pct == 0, 0, winner_fan_pct / (

winner_fan_pct + loser_fan_pct))

100 return(likelihood)

101 }

102
103 # Calculate the Brier score

104 matches <- match_data[c(’winner_player_id’, ’loser_player_id’, ’tourney_order’)]

105
106 models <- c("Bradley-Terry", "Elo", "Glicko", "Glicko2", "Markov")

107
108 bt_l <- bt_indv_likelihood(matches, matches)

109 elo_l <- elo_indv_likelihood(matches, matches, kfac=31.41)

110 glicko_l <- glicko_indv_likelihood(matches, matches, sigma=146.03516, nu=13.32772

)

111 glicko2_l <- glicko_indv_likelihood(matches, matches, sigma=151.2749, vol= 0.0749

, tau=0.3, use_glicko2 = TRUE)

112 markov_l <- markov_indv_likelihood(matches, matches, ranking_data)

113
114 bt_brier <- mean((bt_l - 1)^2)

115 elo_brier <- mean((elo_l - 1)^2)

116 glicko_brier <- mean((glicko_l - 1)^2)

117 glicko2_brier <- mean((glicko2_l - 1)^2)

118 markov_brier <- mean((markov_l - 1)^2)

119
120 brier_scores <- c(bt_brier, elo_brier, glicko_brier, glicko2_brier, markov_brier)

121 print(cbind(models, brier_scores))

5.4.3 Cross-Validation

The following produces the 10-fold cross-validation results of each model as in Table 4.3.
Again, Bayesian extensions call a helper function in their own respective file.

1 # Setup

2 ## Load data as previously

3 ## Libraries

4 library(’BradleyTerryScalable’)

5 library(’PlayerRatings’)

6
7
8 # Likelihood functions

9 ## Bradley-Terry

10 library(’BradleyTerryScalable’)

11 btlikelihood = function(training_data, test_data){
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12 win_lose_tally <- dplyr::count(training_data, winner_player_id, loser_player_id

)

13 # Fit the BT model

14 test_btdata <- btdata(win_lose_tally)

15 test_btfit <- btfit(test_btdata, a=1.5)

16 test_id_coef_df <- coef(test_btfit, as_df=TRUE)[c(’item’, ’coef’)]

17
18 ## Evaluate probability

19 p_i <- exp(test_id_coef_df$coef[match(test_data[[1]]$winner_player_id, test_id_

coef_df$item)])
20 p_j <- exp(test_id_coef_df$coef[match(test_data[[1]]$loser_player_id, test_id_

coef_df$item)])
21
22 l_prob <- sum(log(ifelse(is.na(p_j), 1, p_i / (p_i + p_j))))

23 return(l_prob)

24 }

25
26 ## Elo

27 library(’PlayerRatings’)

28 elolikelihood = function(training_data, test_data, kfac=27){

29 data_df <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

30 data_df$win <- rep(1, length(data_df[,1]))

31
32 num_tournaments <- length(unique(data_df$tourney_order))
33 rating_periods <- num_tournaments %/% 4

34 data_df$tourney_order <- rep(1:rating_periods, each=(length(data_df$tourney_
order) %/% rating_periods) + 1)[1:length(data_df$tourney_order)]

35
36 elo_res <- elo(data_df, kfac=kfac, as_data_frame=TRUE)

37 r_A <- elo_res[[1]]$Rating[match(test_data[[1]]$winner_player_id, elo_res[[1]]$
Player)]

38 r_B <- elo_res[[1]]$Rating[match(test_data[[1]]$loser_player_id, elo_res[[1]]$
Player)]

39
40 l_prob <- sum(log(ifelse(is.na(r_A) | is.na(r_B), 1, 10^(r_A/400) / (10^(r_A/

400) + 10^(r_B/400)))))

41 return(l_prob)

42 }

43
44 ## Glicko

45 library(’PlayerRatings’)

46 glickolikelihood = function(training_data, test_data, sigma=300, nu=15, use_

glicko2=FALSE, starting=2200, volatility=0.15, tau=1.2, rdmax=350){

47 data_df <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

48 data_df$win <- rep(1, length(data_df[,1]))

49
50 num_tournaments <- length(unique(data_df$tourney_order))
51 rating_periods <- num_tournaments %/% 4

52 data_df$tourney_order <- rep(1:rating_periods, each=(length(data_df$tourney_
order) %/% rating_periods) + 1)[1:length(data_df$tourney_order)]

53
54 glicko_res <- ifelse(use_glicko2, glicko2(data_df, init=c(starting, sigma,

volatility), tau=tau), glicko(data_df, init=c(starting, sigma), cval=nu,

rdmax=rdmax, as_data_frame=TRUE))

55
56 r_A <- glicko_res[[1]]$Rating[match(test_data[[1]]$winner_player_id, glicko_res

[[1]]$Player)]
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57 r_B <- glicko_res[[1]]$Rating[match(test_data[[1]]$loser_player_id, glicko_res

[[1]]$Player)]
58 RD_B <- glicko_res[[1]]$Deviation[match(test_data[[1]]$loser_player_id, glicko_

res[[1]]$Player)]
59
60 q <- log(10) / 400

61 g_RD <- 1 / sqrt(1 + 3 * q^2 * RD_B^2 / pi^2)

62 E_A <- 1 / (1 + 10 ^ (- g_RD * (r_A - r_B) / 400))

63
64 l_prob <- sum(log(ifelse(is.na(r_A) | is.na(r_B), 1, E_A)))

65 return(l_prob)

66 }

67
68 ## Markov Chain

69 library(’expm’)

70 markovlikelihood = function(training_data, test_data, prop=0.01, iter=1000){

71 # Tally number of games won/lost

72 tally <- dplyr::count(training_data, winner_player_id, loser_player_id)

73
74 player_ids <- sort(unique(c(as.character(tally$winner_player_id), as.character(

tally$loser_player_id))))
75 num_players <- length(player_ids)

76
77 tally_matrix <- matrix(0, nrow=num_players, ncol=num_players, dimnames = list(

player_ids, player_ids))

78 tally_matrix[as.matrix(tally[,c(’winner_player_id’, ’loser_player_id’)])] <-

tally[,’n’]

79
80 # Get transition matrix

81 games_lost <- colSums(tally_matrix)

82 games_won <- rowSums(tally_matrix)

83 prob_win <- games_won / (games_won + games_lost)

84 trans_matrix <- diag(prob_win) + t(tally_matrix) * (1 - prob_win) / games_lost

85
86 for (i in seq(num_players)) {

87 if (sum(is.na(trans_matrix)) > 0) {

88 trans_matrix[i,] <- rep(1 / num_players, num_players)

89 } else {

90 num_havent_lost <- sum(trans_matrix[i,] == 0)

91 prob_arb_move <- sum(trans_matrix[i,]) * prop / num_havent_lost

92 trans_matrix[i,][trans_matrix[i,] == 0] <- prob_arb_move

93 trans_matrix[i,] <- trans_matrix[i,] / sum(trans_matrix[i,])

94 }

95 }

96
97 # Calculate steady state

98 steady_state <- (trans_matrix %^% iter)[1,]

99
100 # Calculate likelihood

101 winner_fan_pct <- steady_state[match(test_data[[1]]$winner_player_id, player_

ids)]

102 loser_fan_pct <- steady_state[match(test_data[[1]]$loser_player_id, player_ids)

]

103
104 likelihood <- ifelse(is.na(winner_fan_pct) | is.na(loser_fan_pct), 1, winner_

fan_pct / (winner_fan_pct + loser_fan_pct))

105 return(sum(log(likelihood)))

106 }

107
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108 ## Dynamic Elo

109 dynamic_elolikelihood = function(training_data, test_data, kfac=27, start_rating

=2200){

110 matches <- training_data[c(’tourney_order’, ’winner_player_id’, ’loser_player_

id’)]

111
112 all_players <- unique(c(matches$winner_player_id, matches$loser_player_id))
113 num_players <- length(all_players)

114 ratings <- rep(start_rating, num_players)

115
116 total_games_played <- length(matches[,1])

117 matches$winner_games_played <- rep(0, total_games_played)

118 matches$loser_games_played <- rep(0, total_games_played)

119
120 for (player in all_players){

121 relevant_matches <- matches[matches$winner_player_id == player | matches$
loser_player_id == player,]

122 num_games_played <- length(relevant_matches[,1])

123
124 matches$winner_games_played <- ifelse(matches$winner_player_id == player, seq

(1, num_games_played), matches$winner_games_played)
125 matches$loser_games_played <- ifelse(matches$loser_player_id == player, seq(1,

num_games_played), matches$loser_games_played)
126 }

127
128 num_tournaments <- length(unique(matches$tourney_order))
129 rating_periods <- num_tournaments %/% 4

130 matches$tourney_order <- rep(1:rating_periods, each=(length(matches$tourney_
order) %/% rating_periods) + 1)[1:length(matches$tourney_order)]

131
132 for (i in seq(rating_periods)) {

133 matches_in_period <- matches[matches$tourney_order == i,]

134 updates <- as.data.frame(cbind(all_players, rep(0, length(all_players))))

135 updates[,2] <- sapply(updates[,2], as.numeric)

136 colnames(updates) <- c(’player_id’, ’score_change’)

137 for (i in seq(length(matches_in_period[,1]))){

138 row <- matches_in_period[i,]

139 A <- row$winner_player_id
140 B <- row$loser_player_id
141
142 R_A <- ratings[which(all_players == A)]

143 R_B <- ratings[which(all_players == B)]

144
145 E_A <- 1 / (1 + 10^((R_B - R_A) / 400))

146 E_B <- 1 - E_A

147
148 K_A <- kfac / (row$winner_games_played + 5) ^ 0.4

149 K_B <- kfac / (row$loser_games_played + 5) ^ 0.4

150
151 updates$score_change[updates$player_id == A] <- updates$score_change[

updates$player_id == A] + K_A * (1 - E_A)

152 updates$score_change[updates$player_id == B] <- updates$score_change[
updates$player_id == B] + K_B * (0 - E_B)

153 }

154 ratings <- ratings + updates[match(all_players, updates$player_id),]$score_
change

155 }

156
157 r_A <- ratings[match(test_data[[1]]$winner_player_id, all_players)]
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158 r_B <- ratings[match(test_data[[1]]$loser_player_id, all_players)]

159
160 l_prob <- sum(log(ifelse(is.na(r_A) | is.na(r_B), 1, 10^(r_A/400) / (10^(r_A/

400) + 10^(r_B/400)))))

161 return(l_prob)

162 }

163
164 # Cross-validation

165 ## Partition match data into K parts

166 K <- 10

167 matches <- match_data[c(’winner_player_id’, ’loser_player_id’, ’tourney_order’)]

168 data_partitions <- split(matches, seq(K))

169
170 ## Train and test against partitions

171 names <- c(’Bradley-Terry’, ’Elo’, ’Glicko’, ’Glicko2’, ’Dynamic␣Elo’, ’Markov’)

172
173 total_l_prob <- rep(0, 6)

174 for(i in seq(K)){

175 test_data <- data_partitions[i]

176 training_data <- dplyr::bind_rows(data_partitions[-i])

177
178 total_l_prob[1] <- total_l_prob[1] + btlikelihood(training_data, test_data)

179 total_l_prob[2] <- total_l_prob[2] + elolikelihood(training_data, test_data,

kfac=31.41)

180 total_l_prob[3] <- total_l_prob[3] + glickolikelihood(training_data, test_data,

sigma=146.035, nu=13.328)

181 total_l_prob[4] <- total_l_prob[4] + glickolikelihood(training_data, test_data,

use_glicko2=FALSE, sigma=151.275, volatility=0.074, tau=0.3)

182 total_l_prob[5] <- total_l_prob[5] + dynamic_elolikelihood(training_data, test_

data, kfac=250)

183
184 total_l_prob[6] <- total_l_prob[6] + markovlikelihood(training_data, test_data)

185 }

186 l_prob <- total_l_prob / K

187 res_df <- as.data.frame(cbind(names, l_prob))

188 colnames(res_df) <- c(’Model’, ’Log-likelihood’)

189 print(res_df)

5.5 Bayesian Extensions to the Bradley-Terry Model

5.5.1 Calculating Rankings

The following produces the rankings derived from using each of the priors discussed as in
Table 3.2, Table 3.3, and Table 3.4.

1 # Setup

2 ## Load data as previously

3
4 # Only get top N players

5 N <- 100

6 top_players <- ranking_data$player_id[1:N]
7 match_data <- match_data[match_data$winner_player_id %in% top_players & match_

data$loser_player_id %in% top_players,]

8
9 # Assign Starting Ratings

10 players <- as.vector(sort(unique(c(match_data$winner_player_id, match_data$loser_
player_id))))

11 num_players <- length(players)
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12 ratings <- rep(1.000, num_players)

13 names(ratings) <- players

14
15 # Get tally of match sets

16 win_lose_tally <- dplyr::count(match_data, winner_player_id, loser_player_id)

17
18 # Log likelihood function

19 bt_l = function(ratings){

20 winner_r <- ratings[match(win_lose_tally$winner_player_id, players)]

21 loser_r <- ratings[match(win_lose_tally$loser_player_id, players)]

22 return(sum(log(1 / (1 + exp(loser_r - winner_r)))))

23 }

24
25 ## Prior Distributions

26 ### Gamma prior

27 gamma_prior = function(a=2, low=0, up=10){

28 density = function(par) {

29 return(prod(dgamma(par, shape=a)))

30 }

31 sampler = function(n=N) {

32 return(rgamma(n, shape=a))

33 }

34 prior <- createPrior(density=density, sampler=sampler, lower=rep(low,N), upper=

rep(up,N))

35 return(prior)

36 }

37
38 ### Beta Prior

39 beta_prior = function(a=1.5, b=1, low=0, up=10) {

40 prior <- createBetaPrior(a=a, b=b, lower = rep(low, N), upper = rep(up, N))

41 return(prior)

42 }

43
44 ### Normal Prior

45 normal_prior = function(mu=5, sigma=1, low=0, up=10) {

46 density = function(par) {

47 return(prod(dnorm(par, mean=mu, sd=sigma)))

48 }

49 sampler = function(n=N) {

50 return(rnorm(n, mean=mu, sd=sigma))

51 }

52 prior <- createPrior(density=density, sampler=sampler, lower=rep(low,N), upper=

rep(up,N))

53 return(prior)

54 }

55
56 ### Uniform Prior

57 uniform_prior = function(low=0, up=10) {

58 prior <- createUniformPrior(lower = rep(low, N), upper = rep(up, N))

59 return(prior)

60 }

61
62 ## Setup MCMC

63 library(’BayesianTools’)

64
65 ## MCMC Helper

66 get_mcmc_ratings = function(prior) {

67 bayesian_setup <- createBayesianSetup(likelihood=bt_l, names=names(ratings),

prior=prior)
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68
69 # Start MCMC

70 settings = list(iterations = 10000, nrChains=1, burnin=500)

71 bt_mcmc <- runMCMC(bayesianSetup = bayesian_setup,

72 sampler = "Metropolis",

73 settings = settings)

74
75 # Extract MAP

76 ratings_mcmc <- MAP(bt_mcmc)

77 ratings_mcmc_final <- ratings_mcmc$parametersMAP
78 names(ratings_mcmc_final) <- player_data$player_id[match(players, player_data$

player_id)]

79 ratings_output <- sort(ratings_mcmc_final, decreasing=TRUE)

80 return(ratings_output)

81 }

82
83 low <- 0

84 up <- 10

85 priors <- list(gamma_prior(a=2, low=low, up=up), normal_prior(mu=5, low=low, up=

up), uniform_prior(low=low, up=up))

86 prior_ratings <- list()

87 for (prior in priors) {

88 prior_ratings <- append(prior_ratings, list(get_mcmc_ratings(prior)))

89 }

90 print(prior_ratings)

5.5.2 Accuracy Evaluation

For ease, we perform accuracy evaluation by simply calling helper functions created in
other files, as is the case with the Spearman’s rank correlation coefficient, or run separate
ones in the current file. We do so for the Brier score calculation and 10-fold cross-validation
measures.

Brier Score

The following produces the Brier score entries of the Bayesian extensions of the Bradley-
Terry model in Table 4.2.

1 ## Brier-Score

2 ### Helper function

3 ‘‘‘{r}

4 bt_l_given_rankings = function(ratings, matches=match_data) {

5 winner_r <- ratings[matches$winner_player_id]
6 loser_r <- ratings[matches$loser_player_id]
7
8 return(1 / (1 + exp(loser_r - winner_r)))

9 }

10
11 ### Score calculation

12 scores <- c(0, 0, 0)

13 for (i in seq(length(prior_ratings))) {

14 scores[i] <- mean((1 - bt_l_given_rankings(prior_ratings[[i]]))^2)

15 }

16 print(cbind(priors, scores))
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Cross-Validation

The following produces the average log-likelihood of the 10-fold cross-validation procedure
entries of the Bayesian extensions of the Bradley-Terry model in Table 4.3. We note that
we set the number of players here to 100, as the search for optimised initial parameters in
the Metropolis-Hastings algorithm takes significantly long to run for 500 players, as in the
case of considering the entire match data set.

1 ## Cross-Validation

2 K <- 10

3 cross_validate_mcmc = function(prior) {

4 matches <- match_data[c(’winner_player_id’, ’loser_player_id’, ’tourney_order’)

]

5 data_partitions <- split(matches, seq(K))

6
7 total_l_prob <- 0

8 for(i in seq(K)){

9 test_data <- data_partitions[i]

10 training_data <- dplyr::bind_rows(data_partitions[-i])

11
12 players <- as.vector(sort(unique(c(training_data$winner_player_id, training_

data$loser_player_id))))
13 num_players <- length(players)

14 ratings <- rep(1.000, num_players)

15 names(ratings) <- players

16
17 l_f <- function(ratings) {

18 winner_r <- ratings[match(training_data$winner_player_id, players)]

19 loser_r <- ratings[match(training_data$loser_player_id, players)]

20 return(sum(log(1 / (1 + exp(loser_r - winner_r)))))

21 }

22 bayesian_setup <- createBayesianSetup(likelihood=l_f, names=names(ratings),

prior=prior)

23
24 # Start MCMC

25 settings = list(iterations = 10000, nrChains=1, burnin=500)

26 bt_mcmc <- runMCMC(bayesianSetup = bayesian_setup,

27 sampler = "Metropolis",

28 settings = settings)

29
30 # Extract MAP

31 ratings_mcmc <- MAP(bt_mcmc)

32 ratings_mcmc_final <- ratings_mcmc$parametersMAP
33 names(ratings_mcmc_final) <- player_data$player_id[match(players, player_data

$player_id)]
34 ratings_output <- sort(ratings_mcmc_final, decreasing=TRUE)

35
36 total_l_prob <- total_l_prob + sum(log(bt_l_given_rankings(ratings_output,

matches=test_data[[1]])))

37 }

38 l_prob <- total_l_prob / K

39 return(l_prob)

40 }

41
42 ## Calculate avg log-likelihood

43 results <- rep(0, length(priors))

44 for (i in seq(length(priors))) {

45 results[i] <- cross_validate_mcmc(priors[[i]])

46 }

47 print(results)
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5.5.3 Plotting the Prior distributions

The following produces the probability densities of each chosen prior distribution as in
Figure 3.1.

1 ## Plot priors

2 library(’MASS’)

3 library(’ggplot2’)

4 library(’latex2exp’)

5 library(’viridis’)

6
7 samples <- seq(0, 10, length=1000)

8 prior_df <- data.frame(cbind(samples, dgamma(samples, 2), dnorm(samples, mean=5),

rep(0.1, length(samples))))

9 colnames(prior_df) <- c(’x’, ’y_gamma’, ’y_norm’, ’y_uniform’)

10 ggplot(prior_df) + geom_line(aes(x=x, y=y_gamma, color="a")) + geom_line(aes(x=x,

y=y_norm, color="b")) + geom_line(aes(x=x, y=y_uniform, color="c")) + scale_

color_manual(labels = c(TeX("Gamma$(2,␣1)$"), TeX("$N(5,1)$"), TeX("U(0,␣10)"

)), values=viridis(6)[2:4]) + theme_classic() + xlab(’value’) + ylab(’

probability␣density’) + labs(color="Prior")
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