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Abstract

With the advent of protein diffusion models, new proteins can be generated at an
unprecedented rate. The motif scaffolding problem requires steering this generation process
to produce proteins with a desirable functional substructure—amotif. While models have
been trained on this conditional task through classifier-free guidance, recent techniques
in diffusion posterior sampling can be leveraged as zero-shot alternatives. In addition,
their approximations can be corrected with sequential Monte Carlo algorithms to asymp-
totically target the exact posterior distribution. In this work, we formalise the single-motif,
multi-motif, and symmetric motif scaffolding tasks as inverse problems. We then solve
them by adapting diffusion posterior samplers with an unconditional model, Genie,
acting as a prior. Against established benchmarks, we find some success in scaffolding
single motifs and nearly designable scaffolds in the multi-motif case. The latter is possible
by comparing motifs with the predicted fully-denoised proteins in an SE(3)-invariant
likelihood measure involving pairwise distances between each residue’s rigid body frame
representation. This setup performs comparably to conventional masking approaches
in the single motif case but further generalises to multiple motifs. Moreover, we also
produce designable monomers with cyclic and dihedral internal symmetries. This work
demonstrates the capabilities and areas for improvement of zero-shot posterior samplers
in motif scaffolding tasks.
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Chapter 1

Introduction

Proteins are fundamental to many biological systems. Naturally occurring and defined
by an amino acid sequence, they fold to structural conformations that determine their
function. Nature, however, has explored but a tiny fraction of the entire protein universe,
furthering its reach through evolution at the scale of millions of years. De novo protein
design aims to accelerate this process to hours or days. Recent works [1, 2, 3, 4] use diffu-
sion models [5], a class of generative models, to learn the diverse distribution of protein
structures, permitting the sampling of new, potentially novel proteins. Consequently, a
natural task is to steer the generation process to produce proteins containing a particular
functional substructure—a motif. While works have demonstrated their ability on this
task, the motif scaffolding problem, along with its variants, remains a challenge.

The most successful approach to date involves training an unconditional diffusion
model to condition upon the existence of the motif [1, 6]. However, additional training
for each design task may be expensive amid variable design requirements, prompting the
need for a generalisable method. Concurrent efforts [7, 8, 9] propose posterior sampling
techniques to solve numerous inverse problems with a diffusion model as the prior.
When paired with sequential Monte Carlo algorithms, these methods can guarantee
asymptotically exact sampling. By formalising the motif scaffolding problem and its
variants into inverse problems, they become compatible with posterior samplers and
can be solved in a zero-shot fashion, i.e. without explicitly training for the task. Wu et
al. [9] and Trippe et al. [2] have done this for the classic motif scaffolding problem by
conditioning on a partial view of the protein backbone. However, while they have laid
the foundation, their methods are not immediately generalisable in the case of multiple
motifs. Moreover, diffusion posterior samplers have not been sufficiently compared in the
context of motif scaffolding. Hence, a general framework for different motif scaffolding
tasks and the subsequent evaluation of compatible posterior samplers are needed.

1



1.1. Objectives Chapter 1. Introduction

1.1 Objectives

Motivated by the success of generative models in de-novo protein design, we seek to
extend conditional methods to support variants of the motif scaffolding problem, none
of which have been performed before without conditional training. Additionally, we aim
to establish which posterior sampling techniques are appropriate for motif scaffolding.

1.2 Contributions

In meeting our objectives, we made the following contributions through the study.

• Formalisation of themotif scaffolding problem and its variants: Wedefine general
inverse problems formotif scaffolding, multi-motif scaffolding, and symmetricmotif
scaffolding for monomers. These representations make it possible to condition on
any of the tasks without additional training to an unconditional protein backbone
diffusion model.

• Frame-based distance conditioning: We propose alternative motif definitions that
provide comparable performance with existing approaches yet are generalisable
to other scaffolding tasks. In particular, we represent a motif free of its orientation
and location but preserving its chirality. To our knowledge, this is the first instance
in which such a representation is used.

• Adapting diffusion posterior samplers for scaffolding tasks: Several diffusion pos-
terior sampling techniques have either been applied to the single-motif scaffolding
task or none at all. We adapt them to work with formalised scaffolding problems
and evaluate their performance across several established benchmarks.

• Ablation and hyperparameter studies: We perform experiments that explore how
generated backbones are affected by different parameters of the sampler’s proposal
and likelihood, together with hyperparameters of the unconditional model.

• Public code repository: We publish our source code on GitHub with a unified
interface to different scaffolding tasks under several methods. The supported
experiments are designed to be easily configurable and modular enough to use
other unconditional models, posterior samplers, and protein motifs. It is available
at github.com/matsagad/mres-project.

2
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1.3 Ethical Considerations

The problems addressed in the study revolve around protein motifs, the structures
of which were retrieved from the Protein Data Bank. When scaffolds were generated,
designability metrics were quantified purely in silico. No real proteins were handled or
synthesised as part of the project.

During the study, we used several GPUs for model inference and evaluations. While
these devices generally exhibit a non-negligible carbon footprint, we remark that by
opting for specialised hardware accelerators such as GPUs over general-purpose CPUs,
we minimise our overall computation times and maximise the number of FLOPs per
carbon emitted.

3



Chapter 2

Preliminaries

This chapter covers preliminary material to make our methods accessible to a broad
audience. We begin by briefly summarising sequential Monte Carlo algorithms for
posterior sampling in state-space models. We then outline the machinery of diffusion
models, which are the probabilistic models considered. Lastly, we focus our attention on
protein backbones—our distribution of interest.

2.1 Sequential Monte Carlo

Often, we have sequential measurements y1:t and attribute their variations to latent
variables x1:t . To understand the system’s underlying mechanism, we may wish to model
the posterior distribution p(x1:t | y1:t) and, as further measurements are taken, update
our model accordingly. This is known as the online filtering problem. While broader in
scope now, sequential Monte Carlo (SMC) algorithms were originally intended to solve
this problem. In this overview, we precisely focus on this application and follow the
introductory texts by Naesseth, Lindsten, & Schön [10] and Doucet & Johansen [11].

To begin with, we have a so-called target distribution πt whose density is given by

πt(x1:t) =
γt(x1:t)

Zt
,

for some positive function γt and its normalising constant Zt . Typically, we are only
concerned with πt at the final time step t = T , and those at t = 1, . . . , T − 1 are merely
intermediaries. The first step to SMC is to choose a suitable target thatmatches our desired
distribution. For example, in the filtering problem, we can choose γt(x1:t) = p(x1:t ,y1:t) so
that Zt = p(y1:t) and πt(x1:t) = p(x1:t | y1:t). Of course, if we have access to the posterior,
we can immediately assign it to γt . How these sequential distributions behave largely
depends on the probabilistic model at hand.

4
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2.1.1 State-Space Models

One example of a probabilistic model is a state-space model (SSM). Here, we have access
to a prior µ on the initial latent state x1, a Markovian transition kernel f , and a likelihood g,

x1 ∼ µ(·),

xt | xt−1 ∼ f (· | xt−1) for t ≥ 2,

yt | xt ∼ g(· | xt) for t ≥ 1.

We have then the unnormalised joint distribution of x1:t as

γt(x1:t) := p(x1:t ,y1:t) = µ(x1)g(y1 | x1)
t
∏

i=2

f (xi | xi−1)g(yi | xi).

However, as in most cases, how we may sample from γt is not straightforward. SMC
alleviates this issue with a Monte Carlo approximation by way of particle filtering.

2.1.2 Importance Sampling

The key idea to particle filtering is a technique called importance sampling (IS). Given
the difficulty of sampling from the target distribution, we can sample from an easier
proposal distribution and assign weights to the samples. Formally, we can compute the
expectation of some function ht under our target distribution πt

πt(ht) = Eπt
[ht(x1:t)],

by introducing a proposal qt and rearranging the expression in terms of expectations
under the proposal

Eπt
[ht(x1:t)] =

∫

X
ht(xt:t)πt(x1:t)dx1:t =

1
Zt

∫

X

γt(x1:t)
qt(x1:t)

ht(xt:t)qt(xt:t)dx1:t

=
1
Zt
Eqt

�

γt(x1:t)
qt(x1:t)

ht(x1:t)
�

=
Eqt

�

γt (x1:t )
qt (x1:t )

ht(x1:t)
�

Eqt

�

γt (x1:t )
qt (x1:t )

� .

Then, we can independently sample xi
1:t ∼ qt(·) and estimate the original expectation as

Eπt
[ht(x1:t)]≈

∑K
i=1 w̃t(xi

1:t)ht(xi
1:t)

1
K

∑K
i=1 w̃t(xi

t:t)
,

5
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where w̃t(xi
1:t) = γt(xi

1:t)/qt(xi
1:t) act as weights, for i = 1, . . . , K . We denote these weights

as w̃i
t and their normalised counterparts as wi

t for short. A nice property of the un-
normalised weights is they form a consistent estimator Ẑt for the normalising constant
Zt ,

Ẑt =
1
K

K
∑

i=1

w̃i
t .

This is useful, particularly when we nest SMC applications. When ht = δx1:t
, the Dirac

measure, we effectively approximate the target distribution πt .
For every newmeasurement, however, we need to sample and evaluate the expressions

again for all time steps. To do this efficiently, we can choose an autoregressive proposal

qt(x1:t) = qt(x1:t−1)qt(xt | x1:t−1).

This forms the basis of sequential importance sampling (SIS). We omit the details here,
but a recursive update for the unnormalised weights w̃i

t can be derived

w̃t(x1:t) =
γt(x1:t)

γt−1(x1:t−1)qt(xt | x1:t−1)
w̃t−1(x1:t−1), (2.1)

where q1(x1 | x1:0) = q1(x1) and w̃0,γ0 = 1. As such, the weights need not be computed
from scratch but are simply updated by a multiplicative factor.

However, with repeated multiplications, one weight is bound to dominate while the
rest go to zero. This phenomenon, calledweight degeneracy, can bemitigated by resampling
each xi

t according to their weights wi
t at each step, practically filtering out samples with

extremely low weights. This resampling step transforms SIS into a particle filter.

2.1.3 Particle Filtering

The general particle filter, outlined in Algorithm 2.1, combines SIS and resampling. A
small difference in our derivations is that the weights are set to the multiplicative factor
found in Equation 2.1 as resampling already accounts for the weights in the previous
step. Also, we define q1(x1 | x0) = q1(x1).

Again, particle filtering aims to approximate the target distribution at the final time
stepπT . Generally, we canmake twomain choices that determine our sampler’s efficiency:
the proposal qt and the intermediate unnormalised target functions γt . For example, we
look at the simplest filter within SSMs, the bootstrap particle filter (BPF).

6



Chapter 2. Preliminaries 2.1. Sequential Monte Carlo

Algorithm 2.1: The General Particle Filter
input :Measurements y1:T , proposals qt , unnormalised target functions γt , no. of

particles K
output :Approximate samples from the target x1:K

T and their weights w1:K
T

for t = 1, . . . , T do
for i = 1, . . . , K do

Sample x̄i
t ∼ qt(· | x i

t−1) # Sample from proposal
Set w̃i

t ← γt(x1:t)/γt−1(x1:t−1)qt(xt | x1:t−1) # Update weights
end
Set wi

t ← w̃i
t/
∑K

j=1 w̃ j
t , for i = 1, . . . , K

Resample x1:K
t ∼Multinomial(w1:K

t , x̄1:K
t ) # Resample particles

end

Bootstrap Particle Filter

Recall that, in an SSM, we can choose γt as the joint distribution to match the posterior.
Under this choice, the update rule is given by

w̃t(x1:t) =
f (xt | xt−1)g(yt | xt)

qt(xt | x1:t−1)
w̃t−1(x1:t−1),

and, if we choose the proposal qt := f , we find an even simpler result

w̃t(x1:t) = g(yt | xt)w̃t−1(x1:t−1),

depending only on the likelihood. The BPF algorithm is, therefore, a simpler instance of
the general particle filter and is often the baseline in SSMs.

Path Degeneracy

As particle filtering calls for repeated resampling, a common occurrence is for all particles
to be identical after a number of iterations. This is known as path degeneracy. Certain
strategies can be employed to encourage diversity amongst the particles in the resampling
procedure.

Low-Variance Resampling Normally, resampling takes the form of multinomial sam-
pling. However, in practice, techniques such as residual, systematic, and stratified re-
sampling are often used, as they reduce variance at the cost of some added correlation.
They effectively allow particles with substantial weights to make it through resampling
without the risk of them being excluded.

7
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q(x0) q(x1) q(xT )

q(xt | xt−1)

pθ (xt−1 | xt)

· · ·

Figure 2.1: The diffusion process on probability densities. The original distribution q(x0) is
approximately Gaussian after a large number of noising steps T . Diffusion models learn a
reverse process pθ (xt−1 | xt) to undo the added noise.

Adaptive Resampling Another strategy is to reserve the resampling step only for when
the weights start becoming degenerate. One measure used to determine degeneracy is
the Effective Sample Size (ESS) defined by

ESSt =
1
∑K

i=0

�

wi
t

�2 ,

which is equal to one when all weights except for one are zero and K when the weights are
all equal. Typically, resampling is only triggered when ESSt ≤ K/2. In iterations where no
resampling occurs, the weights are updated multiplicatively to account for the weights in
the previous step. For example, in BPF, we set w̃i

t = g(yt | x̄ i
t)w

i
t−1 and, after resamping,

set wi
t = 1/K .

2.2 Diffusion Models

Generative modelling aims to learn some data distribution q(x). Here, we focus on a
particular class called diffusion models. Introduced by Sohl-Dickstein et al. [5], diffusion
models generate samples by learning to undo a diffusion process. It relies on the insight
that, for x0 ∼ q(·), the sequence x1, . . . ,xT , constructed by progressively adding isotropic
Gaussian noise over a large number of steps T , will result in q(xT ) ≈ N (0, I). This is
illustrated in Figure 2.1. By learning to reverse the noise process, samples from Gaussian
noise are precisely mapped to those in q(x). Below, we discuss two equivalent diffusion
model frameworks under discrete denoising steps.

2.2.1 Denoising Diffusion Probabilistic Models

A reformulation by Ho et al. [12], denoising diffusion probabilistic models (DDPMs)
learn to measure the total noise accumulated by the data distribution from the forward
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(noising) process—a fixed Markov process with the transition kernel

q(xt | xt−1) :=N
�

xt;
Æ

1− βtxt−1, βtI
�

, (2.2)

for a static variance schedule β1, . . . ,βT ∈ (0, 1) that decreases as t → 0. In fact, denoting
αt := 1− βt and ᾱt :=

∏t
s=1αs, the reparameterisation trick allows the direct sampling of

xt given x0

q(xt | x0) =N
�

xt;
p

ᾱtx0, (1− ᾱt)I
�

. (2.3)

Notice then that we exactly have q(xT | x0)≈N (xT ; 0, I) for large enough T since ᾱt → 0.
From above, we can also derive an expression for x0

x0 =
1
p

ᾱt

�

xt −
p

1− ᾱtεt

�

, (2.4)

where εt ∼N (0, I). Hence, while we progressively noise the samples, we can predict the
total noise εt in one step to retrieve an estimate for x0. The reverse (denoising) process is
analogously chosen to be a Markov process with the transition kernel

pθ (xt−1 | xt) :=N (xt−1; µθ (xt , t), Σθ (t)) , (2.5)

parameterised by

µθ (xt , t) :=
p
αt(1− ᾱt−1)

1− ᾱt
xt +

p

ᾱt−1βt

1− ᾱt
x̂0(xt , t) Σθ (t) := βtI,

=
1
p
αt

�

xt −
1−αt
p

1− ᾱt

εθ (xt , t)

�

,

where εθ (xt , t) is the added noise as predicted by a neural network and x̂0(xt , t) is the
predicted fully-denoised sample by substituting εθ in Equation 2.4.

The procedure to generate samples x0 ∼ q(·) then involves the reverse process

pθ (x0:T ) = p(xT )
T
∏

t=1

pθ (xt−1 | xt),

first sampling from xT ∼N (·; 0, I) then gradually denoising the samples for T steps.

2.2.2 Score-Based Generative Models

An alternative view proposed by Song & Ermon [13] is to model the data distribution’s
score function s(x) = ∇xlog q(x), a vector that points in the direction of areas with high
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density, which is effectively where noisy samples need to move towards to undo the
forward process. We quickly discuss these score-based generative models (SBGMs) in
relation to DDPMs.

First, a score network sθ is trained under a score matching objective to approximate
sθ (x)≈∇x log q(x). A Markov chain Monte Carlo procedure called Langevin dynamics is
then used to sample from q(x). The process starts by sampling from a prior distribution
xT ∼ π(·) then proceeds to iteratively compute

xt−1← xt +
ε

2
sθ (xt) +

p
εzt , for t = T, . . . , 1,

where zt ∼N (0, I) and ε > 0 is a fixed step size. When ε→ 0 and T →∞,p(x0) = q(x).
Clearly, parallels can be drawn between DDPMs and the score-based approach in their

sampling procedures. We conclude by making their relationship more explicit. Taking
the gradient of the DDPM formulation from Equation 2.3, we find

s(xt) =∇xt
log q(xt | x0) =∇xt

�

−
1

2(1− ᾱt)

�

xt −
p

ᾱtx0

�2
�

= −
xt −
p

ᾱtx0

1− ᾱt
= −

εt

1− ᾱt
,

which establishes the connection between the two frameworks’ learning objectives as

sθ (xt , t) = −
εθ (xt , t)
1− ᾱt

. (2.6)

When working with de-noising networks, we use this relationship to compute the score
when required.

2.3 Protein Structure

Protein molecules are made up of linear chains of amino acid residues. Those consisting
of a single chain are called monomers, and those with multiple chains, i.e. made up of
several monomers, are called oligomers. Remarkably, they fold to structural conformations
that are non-trivially defined by their amino-acid sequence. This structure is commonly
described in varying levels of complexity, but, like most generative modelling efforts,
we focus on a protein’s tertiary structure—its three-dimensional arrangement in space.
A key reason is that while the sequence defines the protein, its structure more clearly
determines its function. Additionally, we limit our scope to monomeric proteins, as most
generative efforts have.
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2.3.1 Geometric Priors

Protein geometries empirically follow some rules. Hence, we can efficiently capture their
features by combining geometric constraints into their representation. To begin with, we
briefly introduce the notion of geometric priors and expand on those relevant to proteins.

Loosely, the group of symmetries G of an object x ∈ X are transformations on it that
produce the same object, i.e. T (x) = x for T ∈ G . In the three-dimensional domain on
which proteins lie, Euclidean transformations take the form of rotations, translations, and
reflections. These transformations form what is known as the three-dimensional Euclidean
group E(3). However, while proteins are treated the same under rotations and translations,
they are generally different when reflected. Chirality in proteins can be observed, for
example, in its strictly right-handed α-helices. The three-dimensional special Euclidean
group SE(3), containing rotations and translations but not reflections, is, therefore, the
symmetry group associated with proteins.

Often, we want to learn some function f : X → Y , whether it be a classifier, a
regressor, or, as we will look at later, a de-noising network. However, the learning
problem may demand learning symmetries withinX from scratch. Instead, we may bake
these symmetries within f itself to make learning more tractable. Typically, we want f

to possess invariance or equivariance under a symmetry group G . Take any x ∈ X and
T ∈ G . We say f is invariant under G if we have f (x) = f (T (x)). Whereas, forY =X , we
say f is equivariant under G if we have f (T (x)) = T ( f (x)). For example, in classifying
whether proteins are fluorescent, f must be SE(3)-invariant, as a protein’s location or
orientation has no bearing on this trait. On the other hand, a de-noising network on
proteins is ideally SE(3)-equivariant, so proteins are de-noised the same way regardless
of their position.

2.3.2 Backbone Representations

Proteins can be partitioned into their backbone and side chains, which are often mod-
elled separately. Here, we cover different attempts to represent protein backbones with
SE(3)-invariance, as illustrated in Figure 2.2. Protein backbones are linear and have
an alternating N − Cα− C atomic structure. One representation fixes the bond lengths
between atoms and focuses on their torsion angles [14], removing the need for rea-
soning with coordinates. However, while SE(3)-invariant, errors in predicted angles
accumulate throughout the chain, leading to inaccurate global conformations. A more
globally aware alternative is modelling the pairwise distances between C-α atoms [15],
capturing enough of the structure to recover the rest of the atomic positions accurately. It
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Ti

Ri
Cαi

· · · · · ·

N

Cαi−1

C

N

Cαi

C

N

Cαi+1

C

O

O

H

H

Ri

Ri+1Ri−1

θi

φi ψi τi

OH

(B) C-α Distance Matrix (C) Rigid Body Frames

(A) Torsion Angles

Figure 2.2: SE(3)-invariant protein backbone representations. (A) Torsion angles are
sufficient to define the entire protein backbone. Here, Ri is the side-chain of the ith residue,
Cαi is the ith C-α atom, and φi ,θi ,ψi ,τi are the torsion angles defining the orientations of
other atomswith respect to the ith C-α atom. (B) Pairwise C-α distances can also bemodelled,
and the rest of the backbone is predicted afterwards. (C) Fixing N−Cα−C substructures as
rigid bodies, residues can be represented as (triangular) frames, defined by a rotation matrix
Ri and a translation vector Ti with respect to a global reference frame.

is SE(3)-invariant but additionally reflection-invariant, making it incapable of accounting
for chirality. Furthermore, generative modelling poses the need to convert the distance
matrix back to three-dimensional space, which is a mapping that is not always possible.
Last in this non-exhaustive review is the frame representation [16, 3], where the N−Cα−C

substructures in each residue are assumed to be rigid bodies with idealised bond lengths
and angles. Here, each residue frame is represented by a rotation matrix Ri ∈ R3×3 and
a translation vector Ti ∈ R3, for its orientation and position with respect to a global
reference frame. These representations can be derived from the three-dimensional C-α
coordinates using the Gram-Schmidt process as in Appendix A.1. This SE(3)-invariant,
but not reflection-invariant, formulation is used in several current state-of-the-art protein
backbone models [1, 6] and the Invariant Point Attention module [16] found in recent
deep learning pipelines.
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Chapter 3

Background

This chapter provides an overview of research topics we build upon and related works
that attempt to solve similar problems. Specifically, we cover diffusion posterior sampling
and works within de novo protein design, particularly for motif scaffolding.

3.1 Posterior Sampling in Diffusion Models

With the ability to sample from a complex data distribution q(x), a natural query is to
sample conditioned on some label y, i.e. from the posterior q(x | y). For example, we may
want to generate proteins x with some internal symmetry defined by y. Formally, we
wish to solve the inverse problem y =A (x) + n, for n ∼ N (·; 0, σ2I), with a diffusion
model acting as a prior distribution on x. Below, we review several recent works.

3.1.1 Classifier-Free Guidance

Recall that SBGMs and, equivalently, DDPMs are capable of reversing a diffusion process
to generate samples from q(x) by modelling the score s(x) =∇xlog q(x)—a quantity that,
broadly speaking, determines the direction noisy samples need to diffuse towards to
approximate q(x). To sample from the posterior, we may opt to move in the direction of
the conditional score at de-noising step t given by

∇xt
log q(xt | y) =∇xt

log q(xt) +∇xt
log q(y | xt), (3.1)

which is the sum of the score and the gradient of the log-likelihood, which we will
call the guidance term. In fact, we may even scale the guidance term to magnify the
conditional signal. In theory, then, a classifier trained to label samples from the data
distribution qθ (y | x) can be used to perform conditional sampling. However, classifiers
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are usually trained on non-noisy data, and the conditional score needs to be evaluated
for noised samples. Ho & Salimans [17] sidestep this by conducting joint conditional and
unconditional training of a diffusion model in what is known as classifier-free guidance.
Here, the model learns to take input labels and de-noise samples conditioned on them.
To then magnify the conditional signal, they expand the likelihood in Equation 3.1 using
Bayes rule and place a guidance scale γ to arrive at

∇xt
log qγ(xt | y) =∇xt

log q(xt) + γ
�

∇xt
q(xt | y)−∇xt

log q(xt)
�

= (1− γ)∇xt
log q(xt) + γ∇xt

q(xt | y).

When γ = 0, the unconditional model is retrieved. For large γ, the modes of the distri-
bution are magnified while its troughs shrink, resulting in samples better satisfying the
label y at the cost of diversity [17]. However, it may be desirable to omit the need for
conditional training to leverage unconditional models in various conditional settings.
This is the case with the subsequent methods.

3.1.2 Projections as Guidance

We loosely refer to the following two methods as projection methods despite not being
conventional terminology. One idea is to project the intermediate latent variables xt onto
an observation subspace at each denoising step to maintain sample consistency with the
label y. Yang et al. [18] make the approximation

∇xt
log q(xt | y) =∇xt

log

∫

q(xt | yt ,y)ψ(yt | y)dyt ≈∇xt
log

∫

q(xt | yt)ψ(yt | y)dyt

≈∇xt
log q(xt | ŷt) =∇xt

log q(xt) +∇xt
log q(ŷt | xt)

where we assume q(xt | yt ,y)≈ q(xt | yt) and ŷt is a sample from ψ(yt | y), the distribution
thatmodels howobservations are affected by the addition of noise. Providedψ is tractable,
which is in linear inverse problems, then conditional sampling can be performed. We refer
to this as observation-projection. With linear inverse problems, the sequence {ŷt}Tt=1 is
essentially constructed by noising the label y. In fact, if the label is a masked view of the
latent variable, we can maximise the guidance term by effectively replacing the masked
segment of xt with ŷt as done in some works [2, 19], also known as the replacement method.

However, when the label itself is noisy or the inverse problem at hand is non-linear, the
above approach is unsuitable. Chung et al. [7] instead project the noisy latent variables xt

to their predicted de-noised versions x̂0 which is available through Equation 2.4 applied
on the de-noising network’s output. The likelihood q(y | xt) can then be approximated to
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yield the conditional score

∇xt
log q(xt | y)≈∇xt

log q(xt) +∇xt
log q(y | x̂0).

Note that the likelihood is precisely q(y | x̂0) = N (y; A (x̂0), σ2I), whose logarithm’s
gradient can be computed via backpropagation. We refer to this as latent-projection.

Still, errors remain in both projection methods due to their approximations [20, 21].
The next set of methods compounds these projection ideas with particle filtering to
provide an asymptotically exact sampling from the posterior.

3.1.3 Sequential Monte Carlo for Diffusion Posterior Sampling

As SMC permits exact posterior sampling with added liberties in the proposal and inter-
mediate target choices, it is well-suited to correct for errors in the approximations of the
above methods. Trippe et al. [2] performed filtering with the replacement method as part
of their SMCDiff algorithm for conditioning on masked regions of latent variables. More
generally, Dou & Song [8] extended the observation-projection method by computing the
optimal proposal within linear inverse problems together with filtering. Their proposed
method, Filter Posterior Sampling with Sequential Monte Carlo (FPS-SMC), showed
competitive performance in several image in-painting and de-blurring tasks among other
posterior samplers. On the other hand, Wu et al. [9] combined an SMC technique called
twisting with the approximate optimal proposal from the latent-projection method to
solve general inverse problems. Their method called Twisted Diffusion Sampler (TDS)
provides state-of-the-art performance in motif-scaffolding, an in-painting problem within
proteins, among methods requiring no conditional training.

A unique feature of these filtering methods is their increasingly accurate posterior
sampling at the controlled expense of a larger number of particles.

3.2 De Novo Protein Design

A recent wave of studies has employed generative modelling in the space of protein
structures. The success of diffusion models in image generation presents them as suitable
candidates for likewise generating new and novel proteins. Unlike images, however, the
Euclidean symmetries of proteins need to be accounted for to make the modelling process
tractable. We highlight existing protein diffusion models and discuss motif scaffolding as
a conditional task.
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3.2.1 Protein Backbone Diffusion Models

Given the difficulty of modelling protein side chains, i.e. the sequence must be known
beforehand to determine side chains to be modelled [22], works in de novo protein design
have historically represented proteins through their backbone. Only after the backbone
is fixed are the side chains predicted. Until recently, all-atom models have not been in the
picture, and therefore, we focus on recent backbone models.

Using an E(3)-equivariant graph neural network (EGNN) setup, Trippe et al. [2]
trained a diffusion model called ProtDiff for generating diverse protein backbones, repre-
sented by the three-dimensional coordinates of C-α atoms. In addition, ProtDiff is used
in tandem with the conditional algorithm, SMCDiff, to design scaffolds for protein motifs.
Expanding to a broader set of design challenges, Watson et al. [1] fine-tune a protein
structure prediction network to act as a de-noising network. Their model, RFDiffusion,
was conditionally trained on a variety of tasks and produced successful designs verified
experimentally. However, in using EGNNs, ProtDiff lacks reflection-invariance and occa-
sionally produces left-hand helices, and RFDiffusion, while SE(3)-equivariant, was not
trained end-to-end for generative tasks. Yim et al. [3] developed a principled framework
for training an SE(3)-diffusion model and applied it to learning protein structures. Their
model, FrameDiff, produces successful designs less frequently than RFDiffusion but is a
quarter of its size. In the forward process, FrameDiff noises the translation vector and
rotation matrix of each frame separately. Lin & AlQuraishi [4] propose simply noising the
three-dimensional coordinates of C-α atoms and training an SE(3)-equivariant de-noising
network, Genie, to asymmetrically de-noise backbones using both elements of the frame
representation. Under the simpler scheme, Genie performs superior to FrameDiff on both
designability and diversity at a further quarter reduction in size. Building on top of this
work, Lin et al. [6] introduced Genie2—a conditionally trained Genie model for motif
scaffolding problems. With the additional augmentations to training data, including
training on a database of AlphaFold [16] predicted structures, Genie2 achieves compara-
ble performance with RFDiffusion in unconditional generation but with state-of-the-art
motif scaffolding results.

The culmination of these backbone model developments is their use in generating
novel proteins that fit a list of design elements.

3.2.2 Motif Scaffolding Tasks

Often, we want to generate proteins with some functional or conformational properties.
The most common task is the motif scaffolding problem, where new proteins are de-
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Single-Motif Scaffolding Multi-Motif Scaffolding

Symmetric Motif Scaffolding

Motifs

Scaffolding with
Degrees of Freedom

AXTYM-RHQGH

VLMARI

AXTYM?RHQGH? ?VLMARI? AXTYM?VLMARI?RHQGH

?VLMARI?VLMARI?VLMARI? ?VLMARI ?VLMARI? VLMARI?

Figure 3.1: Different motif scaffolding tasks. Contiguous and discontiguous motifs are
shown in blue and red, respectively. Single-motif scaffolding is concerned with one motif.
Multi-motif scaffolding considers two or more motifs, each having an orientation irrespective
of the other. Symmetric motif scaffolding produces symmetric proteins, with each subunit
containing the motif. Finally, in scaffolding with degrees of freedom, the motif placement is
not fixed and can be in several locations on the protein backbone.

signed to include a motif—a segment of an existing protein possessing some functional
significance—in some fixed region of the backbone. It is akin to in-painting within im-
ages. Several of the previously mentioned backbone models have been adapted in some
form to support this task. They are tested on the suite of benchmark problems curated
by Watson et al. [1] that covers a wide range of motifs, from small molecule binding
sites to viral epitopes. Recently, together with Genie2, Lin et al. [6] further proposed a
set of benchmark problems for multi-motif scaffolding, where several motifs may be
conditioned upon. This differs from single-motif scaffolding with a discontiguous motif
as each motif’s orientation is independent of the other. Another task demonstrated by
RFDiffusion is the generation of oligomers symmetric under some point symmetry. They
further compound this with a motif to have symmetric motif scaffolding, where each
monomer contains a copy of the motif. A different generalisation to the original problem,
in-painting with degrees of freedom was introduced as a conditional task supported by
the diffusion posterior sampler TDS [9]. Instead of fixing the motif, Wu et al. consider
allowing the motif to be located anywhere on the backbone. We will refer to this as
scaffolding with degrees of freedom. All the tasks are depicted in Figure 3.1
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3.3 Related Work

Our focus lies in solving various motif scaffolding problems through diffusion posterior
sampling with SMC. Several works [1, 6, 23] attempt to solve the same problems by
conditionally training their models on specific tasks. We differentiate our work in being
generalisable to many tasks by simply modifying our formulations, thereby requiring
no additional training. A similar work, Chroma [24], provides an extensive suite of
composable conditioners built on top of an unconditional model but does not use filtering
and differs in their conditional formulations.

In terms of posterior sampling, existing methods such as BPF and FPS-SMC [8] have
not been explored in the motif scaffolding setting. Most similar to our work is TDS
[9]—which uses SMC in conjunction with the latent projection technique for conditional
guidance. Wu et al. use TDS together with FrameDiff for motif scaffolding. However,
like SMCDiff [2], TDS has not been applied to other scaffolding tasks. We precisely
formalise such tasks to be compatible with existing diffusion posterior samplers and
provide non-linear alternatives to the masking approach performed by all of the above
methods. While Genie2 [6] uses distance matrices to represent motifs, we additionally
break reflection-invariance by considering relative angles between frames.
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Chapter 4

Scaffolding by Posterior Sampling

In this chapter, we outline our strategy for scaffolding protein motifs. We formalise each
scaffolding task as an inverse problem and then present compatible SMC samplers.

Formally, we define an inverse problem as y =A (x) + n, where y ∈ Rd , x ∈ RD, and
n∼N (·; 0, σ2Id). Most of the scaffolding tasks are intrinsically linear, i.e. A = A ∈ Rd×D,
but we tackle its weaknesses through non-linear extensions. Hence, our general strategy
is to seek appropriate expressions for A . Adapting this formulation allows diffusion
posterior samplers to transform latent variables into a sequence of observations. We
work with the flattened representation x ∈ R3L, a protein backbone with L residues, each
represented by its three-dimensional C-α coordinates.

4.1 Motif Scaffolding

Given a protein backbone x ∈ R3L, we define the motif and scaffold index sets {M ,S }
as a partition over all backbone coordinates {1, . . . , 3L}, with all three coordinates of
each residue belonging to the same index set. Furthermore, we assume {Mi}

|M|
i=0 and

{Si}
|S |
i=0 are ordered according to residue number and coordinate axis. Presented with a

motif m ∈ R|M|, the motif scaffolding problem involves sampling from the distribution
p(xS | xM = m). This is analogous to inferring the entire protein backbone x given a
partial observation of it xM .

In setting A := A to be a masking operation over x, we can frame this as a linear
inverse problem. Here, we have the observation y :=m, imposing the motif’s position,
and the linear transformation A= AM ∈ R|M|×3L , given by (AM )i j := δMi , j . To see this, note
that

(AMx)i =
3L
∑

j=1

Ai jx j =
3L
∑

j=1

δMi , jx j = xMi
.

We refer to this as the masking approach.
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Notably, Wu et al. [9] have shown improved performance by accounting for the (ro-
tational) orientation of the motif. A possible explanation is that we impose a narrower
path towards the posterior distribution without the additional degree of freedom. Sub-
sequently, Lin et al. [6] used distance matrices as input to their conditionally-trained
protein diffusion model. Motivated by this, we propose a distance approach. As a start,
we express a quadratic transformation as

A (x) =
d
∑

i=1

(A (x))iei :=
d
∑

i=1

x⊤Aixei, (4.1)

where {A}di=1 ∈ R
D×D is a sequence of matrices and ei ∈ Rd is the ith standard basis vector.

To condition on distances, we first declare an ordering o : N→ {( j, k) | 1≤ j ≤ k ≤ |M|}
over all unique pair-combinations of motif residues. Then, for o(i) = ( j, k), we set

yi = yM ,i :=
3
∑

l=1

(m3M j−l+1 −m3Mk−l+1)
2,

(Ai)m,n = (AM ,i)m,n :=
3
∑

l=1

(δm,3M j−l+1 −δm,3Mk−l+1)(δn,3M j−l+1 −δn,3Mk−l+1).

Essentially, we compute all d =
�|M|

2

�

pairwise distances between the C-α atoms in the
motif region xM and match them against the true distances within the motif. Contrary to
masking, this approach yields an E(3)-invariant motif representation, treating the motif
as unique up to translations, rotations, and reflections. This indifference to reflections,
however, violates the chirality of proteins. This drawback is explored in our experiments.

To address this, we break the reflection-invariance by further conditioning on the
backbone’s pairwise orientation deviations. Recall that the frame representation of a
protein backbone can be derived from its three-dimensional coordinates x. We denote
the ith residue then as the pair (Ri(x),Ti(x)) of a rotation matrix and a translation vector
with respect to the global frame. The distance approach has effectively conditioned
on the pairwise distances between the translation vectors Ti(x). Likewise, we define
distances between the rotation matrices Ri(x). First, we remove the dependence on the
global frame by computing the relative rotations R j(x)⊤Rk(x) for every residue pair ( j, k).
Appendix A.1 explains this choice. Then, we use the result measuring the cosine of the
angular difference between two rotation matrices

dcos(R1, R2) =
trace
�

R1R⊤2
�

− 1

2
,
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to compare the sample’s relative rotations with those of the motif. Finally, appending
this to the previous formulation, for an ordering o(i) = ( j, k), we set

yi+(|M|2 ) := cos(0) = 1, (A (x))i+(|M|2 ) =AM ,i+(|M|2 )(x) := dcos(RM j
(x)⊤RMk

(x), R j(m)
⊤Rk(m)).

We will refer to this as the frame-based distance approach. Note that we have a product-
of-experts likelihood by appending the additional set of constraints. As each of the multi-
plicands, i.e. the coordinate and the rotation distances, have differing magnitudes, we
raise the rotation matrix contribution to a power and make this a hyperparameter η.

4.1.1 Multi-Motif Scaffolding

Similarly, as before, suppose the index sets {M 1, . . . ,M N ,S } form a partition over the
backbone coordinates and are each ordered according to residue number and coordinate
axis. Given motifs m1, . . . ,mN , the multi-motif scaffolding problem requires sampling
from the distribution p(xS | xM 1 =m1, . . . ,xM N =mN ).

Unlike in the single motif case, the masking approach fixes the motif-to-motif orienta-
tions and severely underrepresents the posterior distribution. We can adapt the distance
approach to keep each motif’s orientation free by only conditioning on inter-residue
distances within each motif. This can be achieved by concatenating the observations and
their corresponding transformation matrices across all motifs

y :=
�

y⊤M 1 . . .y⊤M N

�⊤
,

{Ai}di=1 :=
n

AM 1,1, . . . ,AM 1,(|M1 |
2 )

, . . . , AM N ,1, . . . ,AM N ,(|MN |
2 )

o

,

where y ∈ Rd for d =
∑N

n=1

�|M i |
2

�

andA is defined in terms of each Ai as in Equation 4.1. To
adapt the frame-based distance approach, we similarly append the additional constraints
for all n ∈ [1, N] and i ∈ [1, |M n|],

y
i+d+
∑n−1

j=1 (|M
j |

2 )
= 1, (A (x))

i+d+
∑n−1

j=1 (|M
j |

2 )
=AM n,i+(|M n |

2 )(x).

4.1.2 Scaffolding with Degrees of Freedom

So far, we assume the motif is located in a specific regionM of the protein. However,
this choice may require careful judgement and domain expertise. Instead, we may be
interested in allowing the motif to be placed anywhere on the protein.

Let M be the set of all possible contiguous motif placements. Wu et al. [9] param-
eterised over the likelihood and placed a uniform prior p(M ) = 1/|M| on the motif
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placements
p(y | x) =
∑

M∈M

p(y | x,M )p(M ) =
1
|M|

∑

M∈M

p(y | x,M ). (4.2)

As x, the computational bottleneck, is reused throughout the summation, the above
mixture likelihood incurs minimal overheads. In Appendix A.2, we propose alternative
methods for this scaffolding task that we additionally explored but did not evaluate
extensively. Note that the inverse problem formulation remains unchanged, meaning our
previous results are compatible with this extension.

4.2 Symmetric Generation

For some point symmetry group in R3, define G = {gk}n−1
k=0 as the set of all its symmetry

operations. We consider designing internally symmetric monomers as we focus on
diffusion models that produce a single chain. However, our formulation can analogously
be applied to models supporting multiple chains to design symmetric oligomers by
treating each subunit as amonomer. Suppose the chain is composed of n identical subunits
with L divisible by n. In dealing with 3D atom coordinates, G is a set of transformation
matrices in R3×3. Without loss of generality, we order G such that g0 is the identity matrix.
We can then construct the inverse problem by setting y := 0 andA := AG − I3L, where
AG ∈ R3L×3L is given by

AG =







diag(g0, . . . ,g0)
... 0

diag(gn−1, . . . ,gn−1)






,

composed of block diagonals diag(gk, . . . ,gk) ∈ R3L/n×3L/n. Effectively, this constrains the
generated protein to be identical to several symmetric projections of its first subunit. This
implicitly partitions the chain into n contiguous segments representing each subunit.
However, one can shuffle the block diagonals between group operations to render the
subunits discontiguous. While the formulation above superfluously subtracts g0 from
the identity matrix, we keep it to simplify our upcoming expressions but truncate the
matrix in practice. We demonstrate this process for cyclic and dihedral symmetries.

4.2.1 Cyclic and Dihedral Symmetries

Proteins with cyclic symmetry Cn are invariant to any integer multiple rotations of 2π/n

with respect to a given axis. Without loss of generality, we choose to work with the z-axis
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and accordingly translate x so its centre-of-mass (CoM) lies on it. Denote Ra,θ ∈ R3×3

as the rotation matrix that rotates a vector anti-clockwise about the a-axis by an angle
of θ . As such, we have the set of rotations GCn

= {Rz,2πk/n}n−1
k=0, and the inverse problem

for Cn can be defined by y := 0 andA := AGCn
− I3L. While any ordering of the set G is

conducive to producing a cyclic protein, it may be favourable to have adjacent angles for
adjacent sub-sequences, e.g. gk = Rz,2πk/n.

Proteins with dihedral symmetry Dn similarly have Cn symmetry in one axis but have
C2 symmetry in another axis orthogonal to the first. We choose the z- and y-axes as
primary and secondary axes of symmetry and translate x to have its CoM at the origin.
Thus, we have GDn

= GCn
∪ {Rz,2πk/nRy,2π}n−1

k=0 and likewise set y := 0 andA := AGDn
− I3L.

4.2.2 Symmetric Motif Scaffolding

In addition to symmetric constraints, we may also condition the existence of a motif. Note
that we can assume the motif is local to exactly one subunit and n− 1 copies exist in the
others. Otherwise, if the motif lies on the boundary between subunits, we can redefine
the motif to be the residues entirely situated in one subunit. Suppose then that the motif
is in the first subunit, i.e.Mi ≤ 3L/n for all i. Hence, we set y :=

�

eM1
. . . eM|M|
�

m, where
ei ∈ RL is the ith standard basis vector, andA := AG − I3L+diag(1M ) to define the inverse
problem. The additional term unmasks the motif indices and asserts it is equal to the
chosen motif m.

4.3 SMC Diffusion Posterior Samplers

With the inverse problems formalised, we can now lay out the general algorithms for
each of the chosen posterior samplers in the context of de-noising protein backbones.
With SMC, we reiterate that two main design choices are available: the proposals qt and
the intermediate targets γt . The samplers we describe differ in their choices for these
distributions. Recall that diffusion models are Markovian in their reverse processes and,
therefore, define an SSM. We begin by considering BPF, the baseline sampler for SSMs.

4.3.1 Bootstrap Particle Filter

In BPF, we set the proposal qt to match the DDPM’s reverse process and the target γt

to be the joint distribution of both latent and observed variables. With this choice, the
likelihood g(yt |xt) becomes the fitness criteria for filtering proteins. While BPF is general
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Algorithm 4.1: Bootstrap Particle Filter for Motif Scaffolding Problems
input :final observation y0, observation distribution ψ, likelihood g, no. of

particles K
output :protein backbones x0 containing the motif
# Create sequence of observations
Sample y1:T ∼ψ(· | y0)

# Generate protein backbones
Sample x1:K

T ∼N (·; 0, I)
for t = T, . . . , 1 do

for i = 1, . . . , K do
Sample x̄i

t−1 ∼N
�

·; µθ (xi
t , t), Σθ (t)
�

# Reverse diffuse particles
Set w̃i

t−1← g(yt−1 | x̄i
t−1) # Evaluate their likelihood

end
Set wi

t−1← w̃i
t−1/
∑K

j=1 w̃ j
t−1, for i = 1, . . . , K

Resample x1:K
t−1 ∼Multinomial(w1:K

t−1, x̄1:K
t−1) # Resample particles

end

enough to admit any likelihood, we first consider linear inverse problems and revisit the
non-linear case in the TDS section.

Our inverse problem states y0 =A (x0) + n, with n∼N (·; 0, σ2I) andA = A in the
linear setting. However, our scaffolding formulations only define y0, e.g. as the motif. To
construct the rest of the observations y1:T , we sample them from what we will call the
observation distribution ψ(· | y0). We may define ψ by applying the transformation A onto
the DDPM’s forward process to get

ψ(yt | yt−1) =N (yt;
Æ

1− βtyt−1, βtAA⊤), ψ(y1:T | y0) =
T
∏

t=1

ψ(yt | yt−1). (4.3)

The likelihood can then be derived using the above yt sequence as

gmask(yt | xt) =N (yt; Axt , σ
2ᾱtI). (4.4)

This technique is what we previously referred to as observation projection. To illustrate in
the case of regular motif scaffolding, when y0 =m, the motif is forward diffused to build
the sequence of observations, and the protein backbones that de-noise most similarly to
the motif are favoured for resampling. The algorithm is summarised more generally in
Algorithm 4.1 for any ψ and g.
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Algorithm 4.2: Filtering Posterior Sampling for Motif Scaffolding Problems
input :final observation y0, masking matrix A, no. of particles K
output :protein backbones x0 containing the motif
# Create sequence of observations
Sample εT ∼N (·; 0, I)
Set yT ← AεT # Share noise with initial state
Sample y1:T−1 ∼ψF PS(· | yT ,y0,A)

# Generate protein backbones
Set xi

T ← εT , for i = 1, . . . , K
for t = T, . . . , 1 do

for i = 1, . . . , K do
Sample x̄i

t−1 ∼N (·; µF PS

�

xi
t ,yt−1, t
�

, ΣF PS(t)) # Optimal proposal
Set w̃i

t−1← gmask(yt−1 | x̄i
t−1)pθ (x̄

i
t−1 | x

i
t)/pθ (x̄

i
t−1 | x

i
t ,yt−1) # Compute weights

end
Set wi

t−1← w̃i
t−1/
∑K

j=1 w̃ j
t−1, for i = 1, . . . , K

Resample x1:K
t−1 ∼Multinomial(w1:K

t−1, x̄1:K
t−1) # Resample particles

end

4.3.2 Filtering Posterior Sampling

To improve the efficiency of BPF for linear inverse problems, we can choose qt to be
the locally optimal proposal q∗t , better estimating the target with fewer particles. This
notion is formalised by minimising the KL-divergence between γt−1(x1:t−1)qt(xt | x1:t−1)

and γt(x1:t). For SSMs, this is a known result with

q∗t (xt | x1:t−1,yt) = f (xt | xt−1)g(yt | xt).

Dou and Song [8] analytically derived the optimal proposal in the diffusion context using
Equations 4.3, 4.4 as the observation sequence and likelihood. It is given by

q∗(xt−1 | xt ,yt−1) =N (xt−1; µF PS (xt ,yt−1, t) , ΣF PS(t)),

ΣF PS(t) =
�

Σθ (t)
−1 +

1
σ2ᾱt−1

A⊤A
�−1

,

µF PS(xt ,yt−1, t) = ΣF PS(t)
�

Σθ (t)
−1µθ (xt , t) +

1
σ2ᾱt−1

A⊤yt−1

�

.

However, instead of forward-noising y0, they perform a noise-sharing technique by setting
yT = AxT and building the sequence backwards with

ψF PS(yt−1 | yt ,y0,A) =N
�

yt−1;
p

ᾱt−1 y +
r

(1−c)(1−ᾱt−1)
1−ᾱt

(yt −
p

ᾱt y), c(1− ᾱt−1)A
⊤A
�
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Algorithm 4.3: Twisted Diffusion Sampler for Motif Scaffolding Problems
input :final observation y0, likelihood g, guidance scale γ, no. of particles K
output :protein backbones x0 containing the motif
Sample x1:K

T ∼N (·; 0, I)
Set wi

T ← g(y0 | xi
T ) for i = 1, . . . , K

Resample x1:K
T−1 ∼Multinomial(w1:K

T , x1:K
T )

for t = T − 1, . . . , 1 do
for i = 1, . . . , K do

Set si
t = sθ (xi

t , t) + γ∇xi
t
log g(y0 | x̂0(xi

t , t)) # Conditional score
Sample x̄i

t−1 ∼N
�

·; 1p
αt

�

xt + (1−αt)si
t

�

, Σθ (t)
�

# Optimal Proposal
Set w̃i

t−1← g(y0 | x̄i
t−1)pθ (x̄

i
t−1 | x

i
t)/
�

g(y0 | x̄i
t)pθ (x̄

i
t−1 | x

i
t ,y0)
�

# Compute weights
end
Set wi

t−1← w̃i
t−1/
∑K

j=1 w̃ j
t−1, for i = 1, . . . , K

Resample x1:K
t−1 ∼Multinomial(w1:K

t−1, x̄1:K
t−1) # Resample particles

end

for some tunable parameter c ∈ [0,1]. We choose c = βt/(1− ᾱt−1) to match our DDPM
variance Σθ (t) = βtI. The weight computation is also updated when using the optimal
proposal. We omit the details but present the algorithm fully in Algorithm 4.2.

4.3.3 Twisted Diffusion Sampler

One challenge in extending our methods to non-linear inverse problems is the infeasibility
of constructing the sequence of observations yt . To circumvent this, we can keep our
observations fixed, i.e. yt = y0, and simply use the predicted fully-denoised protein

x̂0(xt , t) =
1
p
ᾱt

�

xt −
p

1− ᾱtεθ (xt , t)
�

,

to approximate x0. Then, given any likelihood g, we have

g(y0 | xt)≈ g (y0 | x̂0(xt , t)) =N
�

y0; A (x̂0(xt , t)), σ̃2
t I
�

.

This technique is what we previously referred to as latent projection. Wu et al. [9]
recommend setting σ̃2

t := Var[xt | x0], making the filtering criteria lenient in the initial
parts of the reverse process, when the projection x̂0 is still unreliable, and tightening the
filter at the end to satisfy the conditions. To keep it non-zero we set σ̃2

t = (1− ᾱt) +σ2,
so we precisely have our inverse problem formulation at t = 0. Now, we can adapt our
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distance-based approach to have the likelihood

gdist(y0 | xt) :=N

�

y0;
d
∑

i=0

x̂0(xt , t)⊤Aix̂0(xt , t)ei, σ̃
2
t I

�

.

Similarly, we have the frame-based distance likelihood

g f rame_dist(y0 | xt) := gdist

�

y0,1:d/2 | xt

�

grot_dist

�

y0,d/2+1:d | xt

�η
,

where, for an ordering o(i) = ( j, k), motif m, and motif index setM , we have

grot_dist(· | xt) :=N

�

·;
|·|
∑

i=1

dcos

�

RM j
(x̂0(xt , t))⊤RMk

(x̂0(xt , t)), R j(m)
⊤Rk(m)
�

ei, σ̃
2
t I

�

.

To compute the optimal proposal q∗(xt−1 | xt ,y0), we can alternatively find the condi-
tional score. While intractable, we can approximate it with the score and likelihood

∇xt
log q(xt | y0) =∇xt

log q(xt) +∇xt
log g(y0 | xt)

≈ sθ (xt , t) +∇xt
log g(y0 | x̂0(xt , t)).

Now, the proposal is effectively reverse-diffusing the particles but using the conditional
score instead of the score. Similar to guidance, we can magnify the conditional signal
by scaling the guidance term by some γ. The full algorithm is given in Algorithm 4.3.
We remark that, in practice, the gradient is computed via automatic differentiation and
thereby requires a differentiableA . For more information, refer to Appendix A.3.
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Chapter 5

Experimental Setup

In this chapter, we discuss our setup for solving the different scaffolding tasks and
evaluating the generated protein backbones. Our methods are summarised in Figure 5.1.

5.1 In Silico Evaluation Strategy

Similar to existing works [2, 1, 4], we use an in silico self-consistency pipeline for mea-
suring the designability of protein backbones. The procedure involves an inverse-folding
network and a structure prediction network. We use ProteinMPNN [25] and ESMFold
[26], respectively. Each generated backbone is first processed by the inverse-folding
network and is predicted by its representative amino-acid sequences. The structure
prediction network then folds eight of these sequences to produce the predicted structures.
The self-consistency root mean squared deviation (scRMSD) between the generated
and predicted backbones are then computed and the smallest is reported together with

MASDKFKLSFGDCA

AHASDFKLSFPKKL

RADWEFKLSFMWQE

Motif
Unconditional
Diffusion Model p(x | y)

Posterior
Sampler

Sample

Generated
Structure

Inverse-
Fold

Fold

scRMSD
Predicted
Structure

motif RMSD

Figure 5.1: An overview of the motif scaffolding experimental setup. Protein backbones
are first sampled from the conditional setup with the motif as an observation. These gener-
ated structures are then inverse-folded with the motif sequence fixed and folded back into
structures. Finally, metrics such as self-consistency RMSD and motif RMSD are computed
between the predicted structure and both the generated structure and the motif.
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the predicted design’s predicted local distance difference test (pLDDT)—a measure of
confidence by the structure prediction network. The premise of this technique is that gen-
erated backbones possessing natural structures are likely to be represented consistently
across orthogonal methods. We use the available in-silico design pipeline provided by
the authors of Genie21.

5.1.1 Designability and Diversity Metrics

We adopt a similar designability criterion as Lin et al. [6]. We consider a protein back-
bone as designable if it deviates with the most similar predicted design by at most two
Angstroms (scRMSD ≤ 2A) and if the designs are confidently predicted (pLDDT ≥ 70).
For motif scaffolding tasks, we consider a scaffold to be successful if it is designable as
above, the motif is present in the predicted backbone within one Angstrom in alignment
deviation (motif RMSD ≤ 1A), and there is a low predicted alignment error (pAE) be-
tween residues (pAE≤ 5)—another confidence metric of the structure prediction network.
For multi-motif scaffolding, every motif must be within one Angstrom. We remark that
scRMSD in motif scaffolding differs from the unconditional setting, as inverse-folded
sequences are conditioned to have the motif’s sequence.

Furthermore, as success rates can be misleading with identically designed structures,
we also measure sample diversity. Again, similar to Lin et al., we group designs using
single-linkage hierarchical clustering with a distance threshold given by a TM-score of
0.6. We report the number of unique successful scaffolds for motif scaffolding tasks.

5.1.2 Benchmark Problems

The 25 motif problems curated byWatson et al. [1] cover a diverse range of motifs and are
standard for motif scaffolding evaluation. We test our methods here but exclude problem
6VW1, which involves scaffolding multiple chains. For multi-motif scaffolding, we test
against the six problems curated by Lin et al. [6], one of which requires up to four motifs
to be scaffolded. In both benchmarks, we fix the motif placement by taking the median of
scaffold length ranges in their specifications like Wu et al. [9]. We isolate this variability
to provide a less stochastic comparison over the methods.

Given our intention of using an unconditional model that only produces single chains,
we focus on generating internally symmetric monomers for symmetric scaffolding. We
test our symmetric formulation by measuring the designability of generated monomers
up to 128 and 256 residues long under various point symmetries. Because of time, we

1The repository is available at https://github.com/aqlaboratory/insilico_design_pipeline.
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were unable to sufficiently test our symmetric motif scaffolding formulation and leave
this for future work.

Detailed information on the specifications of each problem is given in Appendix B.1

5.2 Conditional Setup

We pair an unconditional model with an SMC sampler to produce protein backbones
under a conditional signal without conditional training.

5.2.1 Unconditional Diffusion Model

In our analyses, we use Genie [4], an unconditional protein backbone diffusion model.
We make this choice for its simplicity in its forward noising process and its relatively
small model size. In particular, we use Genie-SCOPe-128 and Genie-SCOPe-256, models
trained on proteins from the SCOPe dataset [27], capable of generating proteins of up
to 128 and 256 residues, respectively. For motif scaffolding problems, where the overall
length is at most 128 residues, we use Genie-SCOPe-128 due to quicker inference times.
For the multi-motif case, which contains problems requiring longer samples, we use
Genie-SCOPe-256. We use both models to test our symmetric formulations and limit
generated proteins to 128 and 256 residues. We test with two lengths to see the impact of
having short and long asymmetric subunits. In each of the models, we de-noise samples
for T = 1000 steps.

An important factor to consider is themodel’s temperature scale ζ ∈ [0, 1] that controls
the amount of noise added to each step in the reverse process. High ζ leads to more
diverse samples, and low ζ typically yields higher-quality samples. The Genie models
have been shown to attain the best F1 designability-diversity score at around ζ = 0.4.
However, how this affects conditional samplers wrapped around the model is not well
understood. We, therefore, additionally test the effects of ζ across our samplers.

5.2.2 Diffusion Posterior Samplers

We choose to examine the performance of six posterior samplers across the different motif
scaffolding benchmarks. They are:

1. (BPF-FW) BPF with forward noising ψ(· | y),

2. (BPF-BW) BPF with backward noising ψF PS(· | y),

3. (FPSSMC) FPS-SMC,
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4. (TDS-MASK) TDS under a masking approach,

5. (TDS-DIST) TDS under a distance approach,

6. (TDS-FRAME-DIST) TDS under a frame-based distance approach.

Here, we have an equal split of observation and latent projection methods and a com-
parison between the three motif representations. While BPF can be modified to have a
latent-projection likelihood, we retrieve a similar formulation but with twisting when
TDS has guidance scale γ= 0, which is already considered in our hyperparameter tuning.
BPF and FPSSMC are configured to solve linear inverse problems and thereby operate
under the masking approach.

For multi-motif benchmarks, we use TDS-DIST and TDS-FRAME-DIST, as they are the
only methods suitable for independently modelling the orientations of different motifs.
For symmetric generation, we use FPSSMC and TDS-MASK given the linearity of the
inverse problem. While we can swap masking for distances in our symmetric motif
scaffolding framework, we choose the more straightforward approach.

We fix the likelihood standard deviation σ = 0.05 to define the same inverse problem
in all methods. We also fix the number of particles to be K = 8. We perform adaptive
(residual) resampling and resample only when ESSt ≤ K/2. With each sampler having
hyperparameters, we search the most performant based on two motif problems: 3IXT
and 1PRW—a high and a low success rate problem, respectively. Moreover, 3IXT is
contiguous, whereas 1PRW is not. Appendix B.2 further accounts optimisations made to
speed up inference.
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Chapter 6

Results and Discussion

In this chapter, we present the results of our experiments. We proceed through each
scaffolding task in order and, where relevant, highlight supporting experiments.

6.1 Motif Scaffolding

We sampled proteins conditioned on motifs from the RFDiffusion motif scaffolding
benchmark [1]. Ten of the 23 motif problems had at least one successful solution among
the 32 designs generated for each problem. Figure 6.1 summarises the performance of
samplers across the benchmarks. Among the methods, TDS-MASK and TDS-DIST solved
the most, with eight problems each. Furthermore, TDS-DIST and TDS-FRAME-DIST
showed a comparable, if not higher, number of unique successes over TDS-MASK for
several problems. On the one hand, this shows the viability of masking for single-motif
scaffolding, maintaining the linearity of the inverse problem and being broadly applicable
to many posterior samplers. On the other hand, the non-linear distance approaches, with
their comparable performance and generalisability to the multi-motif case, present a case
for being a drop-in replacement.

BPF-FWandBPF-BWwere twomethods that used the reverse process as their proposal.
They yielded low scRMSD but high motif RMSD, resulting in low success rates. This was
because the overall de-noising process mostly remained unchanged, with the conditional
signal only present during resampling. For this reason, we explored FPSSMC to provide
a stronger signal through its optimal proposal. However, while it attained a lower motif
RMSD, it did not improve success due to its higher scRMSD, prioritising the motif’s
appearance over the global integrity of the protein. We suspect a larger likelihood
variance would reduce the resampling frequency and help mitigate this issue, but remark
that this value has been fixed in all the methods.

Overall, the methods performed better when projecting latent variables instead of
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Figure 6.1: (A) Performance of sampling methods on the 24 motif scaffolding benchmarks.
Thirty-two backbones are sampled from each method across all the motif problems. Scaffolds
that are successful and those which meet at least one of the main success criteria are reported
according to their unique count. (B) Examples of the designed scaffolds. The motif, in grey,
is aligned with the scaffold, in white. Most unsuccessful scaffolds either do not possess the
motif in full or have poor self-consistency.

observations. The asymmetry between the forward and reverse processes may have made
it unlikely for a sequence of observations generated through the forward process to be
matched by the backbone while it was being de-noised. Latent-projections were less
sensitive to this asymmetry, given they do not use the forward process.

As the motif placements were fixed for each problem, it is possible that some had
placements that were too restrictive to satisfy. In this scenario, it is sensible to compound
our methods with the mixture likelihood in Equation 4.2 to consider multiple place-
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Figure 6.2: (A) Success metrics of sampling methods on the six multi-motif scaffolding
benchmarks. Thirty-two scaffolds are sampled for each problem. Values for a pass in each
criterion are denoted by the dashed line. Error bars shown are one standard deviation from
the mean. Only samples with correct handedness were considered. (B) Examples of the
designed scaffolds. The motifs, in colour, are aligned with the scaffold, in white. Metrics
which violate the success criteria are in bold.

ments simultaneously. However, we could not pursue this path extensively due to time.
Appendix C.1.3 documents our preliminary results for several unsolved motif problems.

Altogether, a larger number of samples need to be performed to provide more conclu-
sive results. We remark that state-of-the-art methods yield as little as one unique success
in some motif problems for over a thousand samples [6].

6.2 Multi-Motif Scaffolding

We tested our methods on the six multi-motif benchmark problems from Genie2. While
none of the methods succeeded, some designs narrowly missed the success criteria.
Figure 6.2 summarises the results.

Here, the dynamic between the distance and frame-based distance approaches are
shown in full display. For example, in problem 3BIK+3BP5, we found that TDS-DIST had
more designable scaffolds than TDS-FRAME-DIST. This was because the motifs were
sufficiently flat in one dimension, identical to their reflections. Yet, TDS-FRAME-DIST
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still allots a substantial percentage of guidance to correct for handedness and impedes
progress on meeting the distance constraints. In all the problems, however, TDS-FRAME-
DIST maintained correct helix handedness, whereas TDS-DIST did not.

While it is reasonable to expect that TDS-DIST is more likely to produce at least one
reflected motif with an increasing number of motifs, we found that discontiguity in motifs
was the main hindrance to its performance. This is especially apparent in problems
1PRW_four and 1PRW_two. Although the first has four contiguous motifs, the second
has two discontiguous motifs, prompting a worse performance for TDS-DIST. The case is
the same for problems 2B5I and 3NTN, which also have discontiguous motifs. Hence,
η, TDS-FRAME-DIST’s likelihood contribution scale for handedness, could be adjusted
more appropriately to account for this fact.

We hypothesise that problems such as 3BIK+3BP5 can already be solved with more
samples. However, feasible design specifications are more important than ever, as ad-
ditional motifs greatly restrict the allowable conformations of the protein. General im-
provements can potentially be made by sampling motif placements or compounding the
formulation with the mixture likelihood to consider multiple placements at once. To
our knowledge, this is the first attempt to scaffold multiple motifs without conditional
training, and while unsuccessful, it shows some room for improvement.

6.3 Symmetric Generation

We generated internally symmetric monomers for cyclic and dihedral point symmetries.
Several met the designability criteria as shown in Figure 6.3. Designs with at most 128
residues were unsuccessful at higher orders of symmetry as the asymmetric subunits
became increasingly short. Those with at most 256 residues had a similar trend but
were more successful altogether. Of note, higher orders of cyclic symmetry often had
β-sheets surrounding the region closest to the axis of symmetry, with several C8 designs
resembling TIM barrels.

While, unlike RFDiffusion, our method implicitly imposes symmetry, the generated
backbones were all symmetric. We attribute this to the tight inverse problem variance
σ2 = 0.0025 and the nature of FPSSMC and TDS samplers to guide the backbone in
sufficiently meeting the inverse problem formulation. This implicit approach has some
advantages over explicitly symmetrising backbones at each step. First, it allows for control
over looser symmetries by increasing the varianceσ2. This widens the target sample space
to include commonly observed monomeric proteins with non-exact internal symmetries.
This, however, may not be as applicable to symmetric oligomer generation. Second, it
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(A)
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Designable
Scaffolds

FPSSMC-128 TDS-MASK-128 FPSSMC-256 TDS-MASK-256
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Average
scRMSD (↓)

(B)

C-3 C-5 D-2 D-3 D-4

C-3 C-6 C-8 C-10 D-2

L ≤ 256:

L ≤ 128:

Figure 6.3: (A)Designability of symmetric designs across several point symmetries. Sixteen
scaffolds with a maximum of 128 and 256 residues were sampled for each symmetry through
FPSSMC and TDS-MASK. The total number of designable scaffolds is dashed atop the unique
count. The success threshold for scRMSD is indicated by the dashed line. (B) Examples of the
successfully designed scaffolds. The first and second rows show designs with a maximum
of 128 and 256 residues, respectively. The primary axis of symmetry points directly outwards
of the page.

is composable with other constraints without having to orient the asymmetric subunits
at each step. This enables symmetries to form without fixing distances from the axes of
symmetry.
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Chapter 7

Conclusion

In summary, we formalised various motif scaffolding tasks and adapted diffusion pos-
terior samplers to work with them. Our setup was able to produce successful scaffolds
for several motif problems. In addition, our frame-based distance representation of the
motif provided comparable performance with the conventional masking approach but
further generalised to the case of multiple motifs. While our setup was unsuccessful
there, we believe scaling the number of samples or sampling motif placements is enough
to solve some of the current multi-motif problems. Internally symmetric monomers
were also successfully designed by our setup. This work has demonstrated generation
capabilities for several scaffolding tasks without conditional training. We believe our
setup’s performance can be significantly improved through further work.

7.1 Limitations and Future Work

Due to time, we were unable to produce a large number of replicates for the scaffolding
benchmarks. This hurts our performance, as somemotif problemsmay demand hundreds
of samples for a single success. But, at the same time, this artificially inflates sample
diversity, as the metric is best stress-tested with sufficiently many designs, with diversity
tending to zero as the sample size increases. We point out, however, that our fixing of the
motif placement means diversity is also negatively affected. Furthermore, it is difficult
to compare against other methods as they either have different, often less stringent,
designability criteria, do not report sample diversity, or use a different unconditional
model.

To further assess the different formulations, it would be beneficial to compare existing
works on three fronts. First, the masking approach can be parameterised by considering
finitely many random orientations of the motif with improved performance [9]. However,
whether these benefits outperform the distance approaches has not been tested. Second,
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withmotif placements, it is unclearwhether it is better to randomly sample a configuration
and fix the motif or to consider all possible configurations as it is being de-noised. Third,
with symmetric generation, a comparison between an implicit and an explicit symmetric
constraint has yet to be performed. While the implicit method easily stacks with other
constraints, explicitly symmetrising the backbone provides guarantees and does not
require optimising for symmetry.

Hyperparameters were also a challenge in this work. The massive combinatorial space
of parameters was not fully explored and can be investigated further.

We additionally point out that the likelihood measures have a weakness—they only
act upon the motif regions within the backbone. The guidance term, therefore, has zero
contribution to the rest of the scaffold. For large guidance scales, it is hence possible for
motifs to be at an unnaturally large distance away from the scaffold. A more "globally-
acting" likelihood through heuristics or distance constraints on adjacent residues should
help anchor the motif in place. Additionally, the frame-based distance approach for
conditioning motifs may be improved by exploring variations in the likelihood.

Another interesting extension is to fix the computations available and determinewhich
ratio between the number of particles and unique samples will yield the best success rate.
In our case, we have fixed the number of particles.

Finally, recent trends include a quicker generative modelling paradigm in flow-
matching, all-atom models for proteins, and joint sequence and structure modelling.
Our methods may be extended to support design tasks in any of these directions.
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Appendix A

Inverse Problem Formulation

A.1 Justification for Frame-Based Distance Approach

Suppose we have a protein’s three-dimensional C-α coordinates x. It can be converted
into a set of frames {(Ri,Ti)}L

i=1 via Algorithm A.1. Note that the positions for the N and
C atoms are fixed given the rigid body assumption.

Algorithm A.1: Frame Construction from Atom Coordinates (adapted from
Supplementary Material Algorithm 21 of Jumper et al. [16])
input :coordinates of ith N, C-α, and C atoms xi,N ,xi,CA,xi,C

output : frame representation of ith residue (Ri,Ti)
# Get vectors pointing from C-α to N and C
Set vi,1← xi,C − xi,CA

Set vi,2← xi,N − xi,CA

# Do Gram-Schmidt process
Set ei,1← vi,1/∥vi,1∥
Set ui,2← vi,2 − ei,1

�

e⊤i,1vi,2

�

Set ei,2← ui,2/∥ui,2∥
Set ei,3← ei,1 × ei,2

# Construct frame components
Set Ri ←
�

ei,1 | ei,2 | ei,3

�

Set Ti ← xi,CA

We consider the case of a reflected protein xref := −x and a rotated protein xrot := Rθx.
Passing these to the algorithm we find that

xref,i 7→
�

Ri

�−1 0 0
0 −1 0
0 0 1

�

, −Ti

�

, xrot,i 7→ (RθRi, RθTi) .
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For a pair of residues (i, j), we then have

R(xref,i)
⊤R(xref, j) =
�

Ri

�−1 0 0
0 −1 0
0 0 1

��⊤
R j

�−1 0 0
0 −1 0
0 0 1

�

=
�−1 0 0

0 −1 0
0 0 1

�

R⊤i R j

�−1 0 0
0 −1 0
0 0 1

�

,

R(xref,i)
⊤R(xref, j) = (RθRi)

⊤RθR j = R⊤i R⊤
θ
RθR j = R⊤i R j,

which shows R⊤i R j is rotation invariant but not generally reflection invariant. We remark
that this expression is different from RiR

⊤
j , the rotation matrix that transforms the jth

frame’s orientation to that of the ith frame, that we use in finding the cosine of the angle
in between the two matrices. Moreover, we keep the angle in its cosine form and do not
compute its arccosine due to its instability with gradients.

A.2 Other Motif Placement Parameterisations

Here, we consider other motif placement parameterisations. Instead of the likelihood, we
can also directly parameterise over the posterior

p(x | y) =
∑

M∈M

p(x | y,M )p(M | y)∝
∑

M∈M

p(x | y,M )p(y,M ),

and, for each motif placement, sample from p(x | y,M ) while estimating the normalising
constant p(y,M ). This side-steps the uniform prior assumption but introduces significant
computations, as we need to sample from |M| different posteriors. A possibility is to
choose a sufficiently small subset ofM created by randomly selecting motif placements.

Another reason for changing the original likelihood parameterisation is that it favours
proteins containing several copies of the motif. Clearly, each motif copy contributes to
the sum of the likelihood value. As such, naively optimising for this quantity can lead to
undesired proteins. To solve this, we propose to generalise the posterior as

p

�

x |
⋃

M∈M
{y=AM (x)}
�

.

In doing so, we avoid explicit assumptions on the distribution of M . Note that we
precisely retrieve the fixed case when |M|= 1. The likelihood can then be expressed as

p

�

⋃

M∈M
{yAM (x)} | x
�

:=
∑

M∈M

p (y=AM (x) | x)−
∑

M1<M2∈M

p

� 2
⋂

i=1

{y=AMi
(x)} | x
�

+ . . .+ (−1)|M|−1
∑

M1<...<M|M|∈M

p

�

|M|
⋂

i=1

{y=AMi
(x)} | x

�

.
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Here, joint densities involving intersecting motif placements are set to zero. Those which
are not are expressed as a product of the marginal densities. In practice, however, this
computation is rather expensive. Apart from there being a large number of terms, the
densities are extremely small and require being handled in their log-form. Even if an
approximation is made to truncate the series after the second summation, logsumexp
calculations in the complex domain are necessary to deal with subtractions.

A.3 Gradient of Log Likelihood Computation

Throughout, we compute ∇x t
log g(y0 | x̂0(x t , t)) entirely via automatic differentiation.

However, in cases where we want to minimise the storage of gradients in memory after
each operation, we may also derive an analytical expression involving the gradient ofA ,
assuming it is known, and the gradient of the de-noising network εθ . We have, by the
chain rule,

∇x t
log g(y0 | x̂0(x t , t))

=∇x log g(y0 | x)|x= x̂0(x t ,t) · ∇x t
x̂0(x t , t)

=∇x

�

−
1

2σ2
(y0 −A (x))2
�

|x= x̂0(x t ,t) · ∇x t

�

1
p

ᾱt

�

x t −
p

1− ᾱtεθ (x t , t)
�

�

= −
1
σ2

�

y0 −∇xA (x)|x= x̂0(x t ,t)

�

·
1
p

ᾱt

�

1−
p

1− ᾱt∇x t
εθ (x t , t)
�

,

where ∇x t
εθ (x t , t) is computed via backpropagation.
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Appendix B

Experimental Setup

B.1 Benchmark Problems

B.1.1 Motif Scaffolding Benchmark

Problems in the RFDiffusion motif scaffolding benchmark are listed in Table B.1. Exclud-
ing 6VW1, there are 24 problems involving different motif types, lengths, and contiguity.
Where the length and configuration define a range, we can design any length scaffold
that fits those specifications but choose to fix the configuration in our experiments.

B.1.2 Multi-Motif Scaffolding Benchmark

Problems in the Genie2 multi-motif scaffolding benchmark are listed in Table B.2. In the
Genie2 pre-print, problem 3NTN had a configuration with ranges in reverse. However,
their actual specification was different in their GitHub repository. We chose to work with
the ranges specified in their repository and made the correction in Table B.2.

B.1.3 Symmetric Motif Scaffolding

In addition to producing various symmetric monomers, we attempted to replicate RFDif-
fusion’s design of a C3-symmetric multivalent binder to the SARS-CoV-2 spike protein,
containing three copies of ACE2 mimic AHB2 [28] as the motif. However, as we worked
with a diffusion model capable of modelling a single chain only, we attempted to scaffold
the threemotifs with a single monomer. Themultivalent binder designs fromRFDiffusion
were C3-symmetric trimers with 615 residues in total length. The motif present in each
monomer is the first 55 residues of the binder against the covid spike protein. Wematched
RFDiffusion’s total protein length of 615 residues by using Genie-Scope-256 despite this
being an out-of-distribution task.
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Name Description Configuration Length
1PRW Double EF-hand motif 5-20, A16-35, 10-25, A52-71, 5-

20
60-105

1BCF Di-iron binding motif 8-15, A92-99, 16-30, A123-130,
16-30, A47-54, 16-30, A18-25,
8-15

96-152

5TPN RSV F-protein Site V 10-40, A163-181, 10-40 50-75
5IUS PD-L1 binding interface on PD-1 0-30, A119-140, 15-40, A63-82,

0-30
57-142

3IXT RSV F-protein Site II 10-40, P254-277, 10-40 50-75
5YUI Carbonic anhydrase active site 5-30, A93-97, 5-20, A118-120,

10-35, A198-200, 10-30
50-100

1QJG Delta5-3-ketosteroid isomerase
active site

10-20, A38, 15-30, A14, 15-30,
A99, 10-20

53-103

1YCR P53 helix that binds to Mdm2 10-40, B19-27, 10-40 40-100
2KL8 De novo designed protein A1-7, 20, A28-79 79
7MRX_60 Barnase ribonuclease inhibitor 0-38, B25-46, 0-38 60
7MRX_85 Barnase ribonuclease inhibitor 0-68, B25-46, 0-63 85
7MRX_128 Barnase ribonuclease inhibitor 0-122, B25-46, 0-122 128
4JHW RSV F-protein Site 0 10-25, F196-212, 15-30, F63-69,

10-25
60-90

4ZYP RSV F-protein Site 4 10-40, A422-436, 10-40 30-50
5WN9 RSV G-protein 2D10 site 10-40, A170-189, 10-40 35-50
5TRV_short De novo designed protein 0-35, A45-65, 0-35 56
5TRV_med De novo designed protein 0-65, A45-65, 0-65 86
5TRV_long De novo designed protein 0-95, A45-65, 0-95 116
6E6R_short Ferridoxin Protein 0-35, A23-35, 0-35 48
6E6R_med Ferridoxin Protein 0-65, A23-35, 0-65 78
6E6R_long Ferridoxin Protein 0-95, A23-35, 0-95 108
6EXZ_short RNA export factor 0-35, A28-42, 0-35 50
6EXZ_med RNA export factor 0-65, A28-42, 0-65 80
6EXZ_long RNA export factor 0-95, A28-42, 0-95 110

Table B.1: RFDiffusion motif scaffolding benchmark details. The specification for each
scaffolding problem is under "Configuration", with the motif structures in bold. For example,
in motif 2KL8, the problem requires a protein that contains residues from chain A of the motif
at the motif’s residues 1-7 and 28-79, joined together by a scaffold of 20 residues. Furthermore,
the total length of the generated protein must fall in the range specified in the "Length"
column.

46



Appendix B. Experimental Setup B.1. Benchmark Problems

Name Description Configuration Length
4JHW+5WN9 Two epitopes 10-40, 4JHW/F254-278{1}, 20-50,

5WN9/A170-189{2}, 10-40
85-175

1PRW_two Two 4-helix bundles 5-20, 1PRW/A16-35{1}, 10-25, 1PRW/A52-
71{1}, 10-30, 1PRW/A89-108{2}, 10-25,
1PRW/A125-144{2}, 5-20

120-200

1PRW_four Four EF-hands 5-20, 1PRW/A21-32{1}, 10-25, 1PRW/A57-
68{2}, 10-25, 1PRW/A94-105{3}, 10-25,
1PRW/A125-144{4}, 5-20

88-163

3BIK+3BP5 Two PD-1 binding
motifs

5-15, 3BIK/A121-125{1}, 10-20,
3BP5/B110-114{2}, 5-15

30-60

3NTN Two 3-helix bundles 3NTN/A342-348{1}, 10, 3NTN/A367-
372{2}, 10-20, 3NTN/B342-348{2}, 10,
3NTN/B367-372{1}, 10-20, 3NTN/C367-
372{1}, 10, 3NTN/C342-348{2}

89-109

2B5I Two binding sites 5-15, 2B5I/A11-23{2}, 10-20, 2B5I/A35-
45{1}, 10-20, 2B5I/A61-72{1}, 5-15,
2B5I/A81-95{2}, 20-30, 2B5I/A119-133{2}

116-166

Table B.2: Genie2 multi-motif scaffolding benchmark details. The specification for each
scaffolding problem is under "Configuration", with the motif structures in bold. Here, the mo-
tif structures are formatted as <MOTIF_NAME>/<CHAIN_SEGMENT>{<MOTIF_GROUP>}, where
structures belonging to the same motif group are fixed in their orientations relative to each
other. Furthermore, the total length of the generated protein must fall in the range specified
in the "Length" column.
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B.2 Sampler Optimisations

In our implementation of samplers, we make several optimisations. By partitioning
particles into separate groups, we could run several trials simultaneously, making the
most of throughput gainswith increasedmodel batch sizes. This is achieved by computing
weights of particles relative to those in their group and similarly resampling on a per-
group basis. We further perform multiprocessing across several GPUs.

Beyond parallelism, weminimise the number of calls made to the diffusion model. We
cache the predicted noise (or score) between computing weights and sampling from the
proposal. Additionally, as resampling often yields duplicate particles, we only compute
the predicted noise of unique particles. Then, we apply different batches of Gaussian
noise to differentiate duplicate particles from each other. We remark, however, that the
latter does not apply to latent projection methods, as the weights involve the predicted
noise and need to be computed for all particles.
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Appendix C

Additional Results

Here, we document additional results to the main and supporting experiments.

C.1 Motif Scaffolding

C.1.1 Hyperparameter Search and Ablation Study

The hyperparameters of methods were chosen to maximise performance on two selected
motifs: 1PRW and 3IXT, in a discretised grid-search fashion with 16 samples for each
parameter combination. We considered values ζ= 0.4,0.7, 1.0 for the temperature value.
We found a value of ζ = 0.4 to have produced non-zero successes in the observation-
projection methods. We also accounted for the guidance scale γ in TDS as shown in
Figure C.1. TDS-MASK achieved the best unique success rate at two combinations but
had a lower average scRMSD at γ= 1.0 and ζ= 1.0.

On the other hand, higher guidance scales had a negative impact on TDS-DIST. It
began to optimise the likelihood without considering the handedness of the generated
structures, producing a reflected motif with left-handed helices up to 50% of the time. By
reducing the guidance scale, the unconditional model makes a bigger contribution to the
de-noising process and is less likely to make such mistakes. TDS-DIST is thus configured
at γ= 0.25 and ζ= 0.4.

With TDS-FRAME-DIST, an additional parameter η is available to scale the contribu-
tion of the rotation deviations to the likelihood. When η= 0, we retrieve back TDS-DIST.
Due to the large parameter space, we limit our search to a fixed temperature value of
ζ = 0.4 to match TDS-DIST. As shown in Figure C.2, a non-zero rotation scale indeed
corrects for reflections from as little as η= 1.0. However, as with 1PRW, there is a range of
values between 1.0 and 8.0 where the rotation contribution is too weak, hurting the motif
RMSD as it attempts to steer the trajectory away from solutions that meet the distance
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Figure C.1: Grid search for TDS-DIST and TDS-MASK. The rates at which unique success
and right-handed helices were achieved are reported. Average values for two of the four
designability criteria are also shown.
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Figure C.2: Effect of TDS-FRAME-DIST’s rotation scale η on the handedness and des-
ignability of generated structures. The right column depicts the F1 score between the values
in the left and middle columns. A noise scale value of ζ= 0.4 is used throughout.

constraints to those matching the right orientation. When the scale is too large, solutions
have the correct orientations but incorrect distances, leading to malformed backbones.
Here, the scRMSD is at its highest. We find that a value of η= 64.0 balances this trade-off
but remark that the optimal value differs in the case of both motifs.

The varied optimal parameter values acrossmotif problems show a potential weakness
of these methods. For example, we believe the optimal scale value varies with the motif’s
size in space. To overcome these, more work is needed to explore non-static parameter
values.

C.1.2 Further Breakdown of Results

Figure C.3 provides a finer breakdown of the performance of various samplers according
to their average values in all four success criteria. Here, we can roughly measure the
difficulty of motif problems according to their scaffolds’ average scRMSD and motif
RMSD. Problems such as 1BCF, 4JHW, 5IUS, and 5YUI have the highest average deviation
from the success thresholds. In fact, problem 4JHW has yet to be solved through any
method, conditional training or not, and very few successes have been reported for the
others. Another observation is that the 6E6R and 6EXZ problems appear to be about the
same difficulty. As successes were found in the 6EXZ problems, 6E6R problems can likely
be solved by the current setup with more samples.
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Figure C.3: Motif scaffolding benchmark results according to average values of success
criteria. Values for a pass in each criteria are denoted by the dashed line.
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Figure C.4: Average values for success metrics when compounding the latent projection
methods with the mixture likelihood to perform scaffolding with degrees of freedom.
Values for a pass in each criterion are denoted by the dashed line. Error bars indicate one
standard deviation from the mean.

C.1.3 Variable Motif Placement for Unsolved Problems

We parameterised the likelihood as a mixture of several likelihoods corresponding to all
the possible motif placements as in Equation 4.2. The samplers optimised for the motif to
be in at least one of these placements. Since we generally do not know where this may be,
we chose the placement corresponding to the maximised likelihood component.

As in Figure C.4, we found varying results for a select four unsolved motif problems.
An immediate observation is that the average scRMSD increases significantly for TDS-
FRAME-DIST. Upon inspection, these were cases where the motif was present but was
located considerably far away from the rest of the scaffold. One possible explanation is its
progress for meeting the distance constraints was already slow, but further compounding
several possible placements made it unable to commit to one until much later in the
de-noising process when the rest of the protein’s shape had already formed, effectively
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Figure C.5: An example of a C3 symmetric scaffold containing three binder motifs and its
self-consistency predicted structure. The motif, coloured grey, is aligned with the structures.
Large scRMSDs are observed throughout all the samples.

forcing the motif at some location. And, as the rotation matrix’s contribution to the
gradient is unclear, it is possible that it fixes one of the residues and naively orients the
motif with respect to it. While speculative, the absence of this spike in the TDS-DIST case
points towards the rotation matrix conditioning as the reason.

The remainingmethods’ added conditioning improves performance on someproblems
but not others. Notably, TDS-MASK-DOF achieved one successful scaffold for problem
5TPN.

C.2 Symmetric Motif Scaffolding

Taskedwith generating C3 symmetric monomers scaffolding three bindermotifs, FPSSMC
and TDS-MASK could not produce designable scaffolds. All scaffolds had scRMSD> 16A.
An example is given in Figure C.5. This is likely due tomodelling the binder as amonomer
instead of a trimer and our usage of Genie-Scope-256 in an out-of-distribution task of
generating proteins as large as 600 residues. RFDiffusion, capable of modelling several
chains and producing long proteins, succeeds at this task by explicitly symmetrising the
protein as it is being de-noised.
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