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Abstract

When subjected to stress, yeast cells can adapt through some intracellular decision-making
involving the activation and repression of its genes. We model the activity in the pro-
moter region responsible for toggling gene activity as time-inhomogeneous continuous-time
Markov chains and aim to search for architectures whose trajectories efficiently encode
the information about a cell’s environment. To do this, we build a pipeline for evaluating
models. We propose a matrix exponential approximation to simulate trajectories, which
are then estimated by a machine-learning decoder of their mutual information with the
environment. We employ a genetic algorithm framework and show it can navigate through
the combinatorically large space of models to search for fit solutions, most of which exhibit a
chain-like architecture with edges linearly dependent on pairs of transcription factors (TFs)
with complementary nuclear traces. This structure acts as a noise-suppression mechanism,
with the chain’s length controlling the lag before switching active. Furthermore, evolution
under discrete and continuous paradigms of gene activity found the two to have compa-
rable fitnesses with simpler structures for the continuous case. As populations converge
to similar architectures under high selective pressure, distance metrics are formulated be-
tween promoter models so a quality-diversity algorithm can produce a collection of fit and
diverse solutions. These are analysed of their structure, and indeed we find the evolutionary
search’s affinity towards pairing complementary TFs and having models’ average trajectories
resemble a TF’s nuclear traces.
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Chapter 1

Introduction

Genes, at a fundamental level, act as a compilation of nature’s own assembly language—DNA.
Stored within them are instructions for synthesising proteins involved in cellular function.
To initiate these instructions and thereby express the gene, proteins called transcription
factors (TFs) must bind to specific promoter regions in DNA [1]. This course of action is
stochastic [2] and sets the central dogma in motion. By expressing or repressing genes, cells
can respond and adapt to stimuli, including environmentally-induced stress [3], paving the
way for real-time cell decision-making. However, the exact ways in which a cell encodes its
environment through TF signals remain nontrivial due to its spatial and temporal dynamics
[4] and noise from molecular interactions [2, 5].

Eukaryotic cells are distinct for housing their genes within a membrane called the nucleus [1].
Inside this membrane, a measurable shift in the concentration of TFs can occur in the event
of stress, making eukaryotes preferable for analysis. While many studies have investigated
the dynamics of nuclear translocation [6, 7] and signalling pathways [8], the inference of
combinatoric TF encodings [9] and development of transcription bursting models [10, 11]
persist to be of interest. As a result, we turn to recent practical measurements to support
our judgement in developing models.

Saccharomyces cerevisiae, the budding yeast, is an extensively studied archetype of the
eukaryotic cell. In a seminal paper, Granados et al. [12] performed single-cell microscopy
experiments to quantify how extracellular information, namely stress, could be organised
intracellularly within S. cerevisiae. By treating their measurements as an exogenous input,
models that capture the stochasticity of gene expression can be examined and optimised for
high mutual information between the environment and the expressed gene. In doing so, an
inherent TF-signalling structure can be suggested that best reflects existing data. But, more
importantly, relationships between the dynamics and noise of TFs can be identified.

A previous master’s thesis [13] set the groundwork with promoter models, establishing
hypotheses on potential cooperative-like scenarios. However, simulation bottlenecks limited
the scope of analyses, and generalisability remains challenging due to the combinatorial
explosion of models.
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1.1. OBJECTIVES Chapter 1. Introduction

1.1 Objectives

This study aims twofold: exercise a methodology that resolves known bottlenecks and allows
further analysis; consider more prominent but previously intractable extensions. Specifically,
we aim to hasten the evaluation of promoter models and provide meaningful insights into
the role of TFs in transcription regulation. To further the latter, we aim to build a diverse
collection of effective architectures from the combinatorically large search space.

The crux of our method lies within the model evaluation pipeline: a stochastic simulation
to generate sample trajectories for promoter activity and an estimation of the mutual
information it produces. We remark our focus on the gene’s activity rather than its mRNA
production.

1.2 Challenges

Due to the multifaceted nature of the project, there were several moving parts with many
degrees of freedom. As a result, most of the work was spent on validating results and
benchmarking design choices. Below, we list some challenges faced in this light.

• Memory and time trade-offs: Often, calculations were batched in tensors for efficiency
reasons. However, as with matrix exponentials, a vectorised approach produced
quicker execution times at the cost of a much larger memory footprint. While this
was not an issue on a reasonable number of models, it became problematic with larger
runs on an HPC cluster where jobs have a fixed time and memory allocation. In
addition, searching for memory leaks and optimisations on multi-processing code was
challenging as jobs were terminated without a meaningful trace when such constraints
were violated. Through memory profiling tests, certain thresholds were put in place
for which an algorithm would default to a slower but less memory-intensive approach.

• Parameters for the evolutionary search: Orchestrating a successful evolutionary
search involves rigorous testing of many hyperparameters. For instance, the genetic
algorithm alone required the tweaking of frequencies of up to eight mutation operators
to avoid premature convergence and the choice of schemes that provide appropriate
selective pressure. From the novelty search aspect, various archival strategies were
experimented with. Different novelty metrics define spaces with possibly different
dimensionalities, requiring careful consideration of archival thresholds or densities.
We acknowledge the amount of parameter tuning necessary as a weakness of our
method.

• Efficient nearest neighbour search for arbitrary metric spaces: Space-partitioning
data structures for metric spaces mostly rely on the triangle inequality to prune the
search queries. As such, diminishing returns are commonplace for high-dimensional
metric spaces. Vantage point trees, M-trees, and cover trees were implemented to aid
in nearest neighbour searches, but the number of calls to the distance metric often
resulted in O(n2) complexity. As such, a brute-force approach taking symmetry into
account was ultimately superior. Approximate nearest neighbours were also briefly
explored. However, with our unconventional metric space, no assumptions about the
fitness around a model’s locality could be made to guarantee that local competition
scores were accurate.
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Chapter 1. Introduction 1.3. CONTRIBUTIONS

1.3 Contributions

While the pipeline was originally the project’s focal point, we also proposed new ideas to aid
in the analysis of models which can be reused in other contexts. Below, we summarise what
we believe to be notable takeaways from the study in chronological order.

• We frame promoter dynamics as time-inhomogeneous continuous-time Markov chains
and demonstrate their capability of producing trajectories that encode different forms
of environmental stress. We further consider three model paradigms of increasing
generality and show how they differ when optimised.

• We find a good incentive to decouple mRNA from the system and propose an approxi-
mation by iteratively multiplying matrix exponentials, yielding similar results to exact
SSA methods. We show it is highly vectorisable in computation, has deterministic sim-
ulation times, and is adaptable to compute the average trend of the entire population
efficiently. We improve exact SSA efforts on the order of 1× 103 times for four-state
models and several higher orders of magnitude for larger models.

• We find a trade-off in speed and accuracy to keep simulation and decoding times
within the same order of magnitude to design a high throughput evaluation pipeline.

• We introduce a genetic algorithm framework for evolving promoter models with
constraint-preserving genetic operators, e.g. our subgraph-swapping crossover. We
show it can find models with exceptionally high MI and tackles the combinatorically
large space well, optimising a model’s architecture and weights at the same time.

• We present a formulation of models as points in a metric space under two proposed
distance metrics: a topology measure based on the Wasserstein Weisfeiler-Lehman
scheme and a trajectory measure that differentiates between average activity trends,
computable from our approximation method. We also show which aspects of a model
each metric discriminates against to drive the search.

• Coupled with the above metrics, we perform a novelty search with local competition
under an unstructured quality-diversity archival strategy and elitism as in NSGA-II to
draw similarities between good models through the archive. This can be generalised
for evolving diverse graphs evaluated under black-box fitness functions.

• We publish the code on a public repository1 with documented examples for bench-
marks, analysis of models and evolutionary search trends, and various visualisations.

1.4 Ethical Considerations

We use Imperial College’s High-Performance Computing cluster to run large memory and
processor-heavy jobs. We recognize its large carbon footprint and only run jobs when
necessary for this study.

S. cerevisiae is widely used in the brewing industry. As such, any information on the budding
yeast can, in some form, lead to malpractice. The extent to which this study contributes,
however, is limited.

Single-cell microscopy data comes from a previous study following appropriate guidelines

1The repository is accessible at github.com/matsagad/beng-project.
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1.4. ETHICAL CONSIDERATIONS Chapter 1. Introduction

and laboratory etiquette. As such, no living organisms are directly involved in this study.
Furthermore, the data is under a Creative Commons Attribution 4.0 International license.
We have permission from the authors and provide proper attribution.
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Chapter 2

Preliminaries

In this chapter, we introduce material fundamental to the methods undertaken in the study.
These concepts are presented together with their biological counterparts for the reader to
develop an appreciation for the subject matter.

We first establish the setting on the genome level with the role of transcription factors. We
then introduce a class of stochastic processes and assess a simple model for transcription.
Lastly, we present tools from classical information theory and show how environmental
stress can act as quantifiable signals for cell decision-making.

2.1 Biological Underpinnings

A somewhat counterintuitive fact is that virtually all cells in the human body contain the
same piece of genetic information. One might then ask: how can cells differentiate their
function? The answer is gene regulation. This act of regulating gene expression has been
extensively studied ever since the widely adopted central dogma of biology was proposed by
Crick [14]. In it, the flow of genetic information is described to move from DNA to RNA,
the transcription stage, and from RNA to protein, the translation stage. Gene regulation is
mainly a byproduct of complex networks and feedback loops induced by these two stages.
We focus on transcription, the first of the two, and briefly discuss its course of action.

2.1.1 Transcription Factor Dynamics

The initiation of the transcription process involves proteins called transcription factors
(TFs) to bind to specific promoter regions in DNA [15]. Generally, TFs can be classified
as activators or repressors depending on whether they initiate or inhibit the expression of
certain genes. For example, when yeast cells undergo oxidative stress, a signalling pathway
is triggered, leading to activator TFs Msn2 and Msn4 to accumulate in the nucleus and
admit an adaptive response [16].

Combinations of TFs allow for a coordinated expression of various genes. Another source
of complex behaviour is attributed to feedback loops wherein a protein synthesised by the
expression of one gene acts as a TF for another [17]. These interconnected relationships
form what is known as a gene regulatory network [18]. In the case of budding yeast, the
number of known TFs, at least over a hundred [19], is viable enough for individual analysis.

5



2.2. STOCHASTIC PROCESSES Chapter 2. Preliminaries

However, with at least 2100 subsets, their combinatorial pairings are not. Inference for gene
regulatory networks, therefore, persists to be a difficult task.

In eukaryotic cells, measurements for TF binding typically rely on their variable concen-
tration or lack thereof within the nucleus. A natural inclination is to believe that genes are
activated to varying degrees. Certainly, while population averaging allows for a continuous
range of gene activity, on the scale of a single cell, the activity of genes and the biochemical
reactions they depend on are discrete [20]. This intrinsic noise is why transcription, like
most cellular activities, is deemed stochastic [20, 2].

Stochastic models have henceforth been considered to study this phenomenon.

2.2 Stochastic Processes

A stochastic process (Xt)t∈T is a collection of random variables under a probability space
for some time domain T and state space E common to all random variables. We consider a
continuous time domain, T = R∪{0}, and a discrete state space throughout the study.

2.2.1 Poisson Process

One of the most fundamental stochastic processes is the Poisson counting process, which
takes values from E = N0 and is strictly non-decreasing. We say (Nt)t≥0 is a Poisson process
with rate λ > 0 if it satisfies [21]:

1. Zero initial count: N0 = 0

2. Independent increments: Given any n ∈ N and 0 ≤ t0 < t1 < · · · < tn, the random
variables Nt0 , Nt1 −Nt0 , . . . , Ntn −Ntn−1 are independent.

3. Stationary increments: Given any two times 0 ≤ s < t for any k ∈ N0,

P(Nt −Ns = k) = P(Nt−s = k)

4. Single arrival times: For any t > 0 and 0 < δ ≪ 1,

P(Nt+δ −Nt = k) =


1− λδ + o(δ) k = 0

λδ + o(δ) k = 1

o(δ) k ≥ 2

where o(δ) is some function with limδ→0 o(δ)/δ = 0.

Notably, the fourth definition above is in the form of its infinitesimal transition rates, which
are similar in form to the Forward Kolmogorov equation governed by it. An equivalent
statement is: for any t ≥ 0, Nt follows a Poisson distribution Poi(λt).

This is especially useful as the inter-arrival times Hi, i.e. the time between increments, follow
an exponential distribution Exp(λ) and thus satisfy the lack of memory property. That is,
given x, y > 0, Hi satisfies

P(Hi > x+ y | Hi > y) = P(Hi > x)

A Poisson process is one of the simplest examples of a more general class of processes known
as continuous-time Markov chains.

6



Chapter 2. Preliminaries 2.2. STOCHASTIC PROCESSES

2.2.2 Continuous-Time Markov Chains

A continuous-time Markov chain (CTMC) is a stochastic process (Xt)t≥0 with a continuous
time domain taking values from some state space E which satisfies the Markov property.
That is, given n ∈ N0, values x0, x1, . . . , xn ∈ E, and times 0 ≤ t0 < t1 < · · · < tn,

P(Xtn = xn | Xtn−1 = xn−1, . . . , X0 = x0) = P(Xtn = xn | Xtn−1 = xn−1)

Furthermore, a CTMC is said to be time-homogenous if it satisfies

P(Xtn+1 = j | Xtn = i) = P(Xtn+1−tn = j | X0 = i)

for i, j ∈ E and n ∈ N0. In other words, the transition probabilities between states do not
change with time.

2.2.2.1 Transitioning Between States

Markov chains with a discrete state space can be described as a set of states with some prob-
ability of moving between any two of them. CTMCs, like their discrete-time counterparts,
can be represented by a transition matrix Pt = (pij(t)) where pij(t) is the probability of
moving to state j at time t given the chain is in state i at time 0, i.e.

pij(t) = P(Xt = j | X0 = i)

Note that we assign P0 = I. A CTMC thus begins in one state, and either remains or jumps
to another state after time t has elapsed, according to its transition matrix Pt.

Naturally, another way to frame CTMCs is by considering the holding times spent at each
state. For δ > 0, we define the generator matrix Q = (qij) as

Q = lim
δ↓0

Pδ −P0

δ

Denoting its non-diagonal entries as qij = λij , the entries can be given by

qij =

{
λij , i ̸= j

−
∑

j∈E,j ̸=i λij , i = j

Suppose the chain is currently at state i and let A(i) be the set of states it can transition to.
An analogous interpretation of simulating a CTMC is to set up exponential alarm clocks, one
for each state in A(i). Here, an alarm clock corresponding to state j follows an exponential
distribution Exp(λij). As soon as the first clock rings, the chain transitions to the state it
belongs to, and the process is repeated.

Given X1, . . . , Xn independent with Xk ∼ Exp(λk), it can be shown that the minimum
satisfies H = min{Xk} ∼ Exp(

∑
k λk) with

P(H = Xj) =
λj∑
k λk

When applied to our analogy, the above result can associate the holding times Hi with the
probability of the chain moving to another state. The generator matrix is thus sufficient to
capture the dynamics of the chain, but an expression for Pt is still often useful. It turns out
that when {Pt} is a uniform semigroup, it can be expressed in terms of its generator.

7



2.2. STOCHASTIC PROCESSES Chapter 2. Preliminaries

2.2.2.2 Matrix Exponential Solution

Another property of Markov chains is that their transition matrix satisfies the Chapman-
Kolmogorov equations, which in matrix form, is

Pt+s = PtPs

An expression for the transition matrix can be derived from this. For δ > 0,

Pt+δ −Pt

δ
=

Pt(Pδ −P0)

δ
= Pt

Pδ −P0

δ

and taking the limit as δ ↓ 0,
P′

t = PtQ

The above differential equation is the forward Kolmogorov equation (FKE). In biological lit-
erature, it is also known as the chemical master equation with a similar but often transposed
representation of matrices. Solving it admits the matrix exponential solution

Pt = etQ

2.2.2.3 Gene Activation Mechanism

Consider, as an example, a simple gene on-off switch determined by the rates equations

A
koff−−−→ I, I

kon−−→ A, A
ksyn−−−→ A+M

where the gene switches between an active and inactive state given by rates kon and koff , and
mRNA is produced with rate ksyn only when the gene is active. Denote nX as the population
of X . We then have the chemical master equations for the gene activity

dpA
dt

= −koffpA + konpI (2.1)

dpI
dt

= koffpA − konpI (2.2)

and the mRNA produced

dpM,0

dt
= −ksynpApM,0

dpM,i

dt
= ksynpApM,i−1 − ksynpApM,i, for i > 0

where pA = P(nA = 1, nI = 0), pI = P(nA = 0, nI = 1), and pM,i = P(nM = i).

Breaking down pA = pAA + pAI and pI = pIA + pII through Baye’s rule and expressing 2.1
and 2.2 in matrix form, we find the FKE of an analogous two-state CTMC.

d

dt

(
pAA pAI

pIA pII

)
=

(
pAA pAI

pIA pII

)(
−koff koff
kon −kon

)
On the other hand, the second system is the FKE of a Poisson process with rate λ = ksynpA.
We thus expect the amount of mRNA to follow such a process.

Simulating the first process yields a trajectory for the gene’s activity over time. The next
section discusses how information can be decoded from such time series.
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2.3 Information Transmission

Due to the stochastic nature of molecular interactions and pathways for gene regulation, the
quality of biochemical signals largely depends on their noise. Take environmental stress
signals, for example. With increasing noise, the cell becomes unable to distinguish between
its environmental identity and, as a result, can not adapt accordingly. We turn to classical
information theory to formalise these concepts.

2.3.1 Classical Information Theory

In a 1984 landmark paper, Shannon [22] proposed a notion of entropy that eventually sprung
forth the field of information theory and many of its other variations. Shannon entropy,
or entropy for short, measures the uncertainty of a random variable X, taking values from
a finite set X . Denoting pX as the probability density function of X, the entropy of X is
defined as

H(X) = E [− log2(pX(x))] = −
∑
x∈X

pX(x) log2 (pX(x))

An interpretation of this quantity is the unevenness of the probability distribution for X
[23]. Particularly, it attains a minimum of zero when X has a deterministic value and a
maximum of log2 (|X |) when X has a uniform distribution across all values. Shannon [22]
describes the logarithmic base as analogous to the unit for measuring information. Base-2,
as with current computer hardware, lends the units of bits.

We note that the random variable is discrete and the sample space finite. A possible
expression for the continuous case, known as differential entropy,

H(X) = −
∫
X
pX(x) log2(pX(x))dx

does not quite have as natural of an interpretation over the discrete case, notably differing as
it permits negative values. Kolmogorov [24] proposed ϵ-entropy for arbitrary metric spaces
to handle some of these concerns. However, this study only deals with the discrete case and
directs the reader to some of his work.

From this formulation, a multivariate extension can be derived. Given random variables X
and Y with finite sample spaces X and Y and pXY as their joint probability density function,
the joint entropy is given by

H(X,Y ) = −
∑
x∈X

∑
y∈Y

pXY (x, y) log2 (pXY (x, y))

and thus the conditional entropy can then be defined as

H(X | Y ) = H(X,Y )−H(Y ) = −
∑
x∈X

∑
y∈Y

pXY (x, y) log2

(
pXY (x, y)

pY (y)

)

A related measure not to be confused with is relative entropy, which accounts for when X
and Y share the same state space X

Hrel(X | Y ) = −
∑
x∈X

pX(x)log2

(
pX(x)

pY (x)

)

9
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Taking its negation yields the Kullback-Liebler (KL) divergence, dKL(pX∥pY ), which has
geometric interpretations for the two probability distributions.

Finally, we introduce mutual information (MI), given as [25]

I(X;Y ) = H(X)−H(X | Y ) =
∑
x∈X

∑
y∈Y

pXY (x, y) log2

(
pXY (x, y)

pX(x)pY (y)

)

which is a non-parametric measure for the mutual dependence [26] or correlations [23]
between two random variables. For example, the mutual information is zero when X and Y
are independent and attains a maximum of H(X) when X = Y . The definition can also be
expressed as [23]

I(X;Y ) = dKL(pXY ∥pXpY )

with pXY as the joint and pX and pY as the marginal distributions of X and Y . Unlike KL
divergence, mutual information is symmetric.

Another interpretation is it measures the reduction in uncertainty for X having learned Y
[26]. In the study, X and Y correspond to the cell’s environmental state and gene activity.
And so, a model capable of high mutual information sends easily differentiable signals for
the cell to know its environment and adapt.

To conclude, we present the data processing inequality, an intuitive but critical result.
Suppose X → Y → Z1 form a Markov chain, i.e. the conditional distribution of Z only
depends on Y and that of Y only depends on X . Then

I(X;Y ) ≥ I(X;Z)

Informally, it captures how information degrades as it flows through more channels. When
Z = g(Y ) for some transformation g, we precisely have a lower bound for the mutual
information between X and Y given some processing of Y has occurred.

2.3.2 Transcription Signalling

Some traits of the transcription process have been described in past experiments. Finally, we
lay out a few results that can serve as points for analysis in this study.

2.3.2.1 Transcriptional Bursting

Given the discontinuities of gene activity, the amount of RNA copies resulting from tran-
scription in single cells has been characterised as exhibiting bursts or pulses on the time
scale of minutes [27]. A simple yet capable model for this behaviour is one with possibly
many gene activity states, some of which act as refractory states [11]. Models with many
states can capture increasingly complex bursts. However, with more refractory states, the
channel capacity, the maximum rate at which information can be transmitted, generally
decreases [28]. Therefore, sufficient complexity is mostly context-dependent and requires
multiple tuning steps to fit with data.

1This overloaded notation is not to be confused with chemical rates equations.
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2.3.2.2 Transcription Factor Signals

In the context of stress adaptation in budding yeast, TFs have quantifiable differences. Some
TFs have more variable nuclear concentrations than others leading to noisier transcription.
Remarkably, TFs can also encode stress with varying specificities. For example, TFs msn2
and msn4 encode for general environmental stress in yeast, and TFs Mig1 and Yap1 encode
for carbon and oxidative stresses, respectively [12]. Some can also discriminate against
various stress intensities and use the time series of their traces in different ways.

Meanwhile, from an information-theoretic point of view, we can quantitatively establish the
relationship between the true underlying transcription mechanism and the TFs. Suppose
we have a model that depends on n independent TF signals F1, . . . , Fn, say, through some
function g. By the Data-Processing inequality [25], we have

I(X; g(F1, . . . , Fn)) ≤ I(X;F1, . . . , Fn) ≤
n∑

i=1

I(X;Fi)

The sum of the mutual information for each TF and the environment is thus an upper bound
for any such model. Despite this, signalling pathways are known to have redundancies to
aid in noise suppression, and some TFs may potentially share some bits in common [12].
Hence, in addition to suitable complexity, a good model must be able to extract unique bits
of information from the signals.
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Chapter 3

Background

This chapter outlines existing methods from multiple disciplines. We assess their suitability
to meet the study’s goals and document current research related to ours. While the following
chapter may appear to be verbose, it backs the many decisions concerning the study. Every
concept below has been tested or at the very least considered at some point.

We first summarise approaches for simulating biochemical systems expressed as ordinary
differential equations. Next, we cover recent practices for estimating mutual information
from time series data. Finally, we discuss evolutionary algorithms for black-box optimisation
and prompt the use of metrics and notions of similarity.

3.1 Stochastic Simulation of Biochemical Systems

The behaviour of a biochemical system can be written as a system of ordinary differential
equations, typically known as reaction-rate equations. However, deterministic solutions
may be difficult to compute in large systems. Furthermore, even if they exist, they fail to
capture the stochasticity of biological phenomena. A technique often employed is to define
a stochastic process by treating the ODE system as a master equation. Below, we present
methods for simulating these stochastic biochemical systems.

3.1.1 Gillespie Algorithm

Gillespie [29] first presented a way to simulate coupled chemical reactions, producing an
exact trajectory for a population of molecules. It is exact in that it considers the entire
system regardless of its analytical solvability. The method is a Monte Carlo procedure that
selectively fires reactions in between exponentially distributed time intervals. A pseudocode
is given in Alg. 1. It and similar classes of algorithms are often known as exact stochastic
simulation algorithms (SSAs).

A familiar analogy (see 2.2.2.1) can summarise the algorithm as follows: at the start, expo-
nentially distributed alarm clocks are set, each corresponding to a chemical reaction and
whose rate, also called its propensity, depend on an expression from the master equation.
The time before the subsequent reaction is thus the minimum of the exponential random
variables. This is also exponentially distributed, whose rate is the sum of propensities. The
reaction attached to the first alarm clock that goes off is assumed to fire, and the procedure
is repeated.

12
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Algorithm 1: Gillespie Algorithm (Next Reaction Method) [30]

Input: initial state: x0, simulation time: T
1: x← x0; t← 0
2: while t < T do
3: a0(x)←

∑M
i=1 ai(x) ▷ Calculate sum of propensities

4: τ ∼ Exp(a0(x)) ▷ Sample time until next reaction
5:

6: u ∼ U(0, 1) ▷ Sample uniform random variable
7: Find µ ∈ [1, . . . ,M ] where ▷ Choose reaction to fire
8:

∑µ−1
i=1 ai(x) < u · a0(x) ≤

∑µ
i=1 ai(x)

9:

10: x← x+ νµ; t← t+ τ ▷ Update state and time
11: end while

While it is exact in trajectory, its computational complexity and non-deterministic simulation
times may deter some use cases. More efficient ways of simulating the system have been
proposed, including the Extrande algorithm [31]. However, a different strategy can be
pursued by leaping through the simulation in constant intervals.

3.1.2 Poisson Tau-Leaping

In an attempt to address the stiffness of systems—the existence of multiple time scales, e.g.
having fast and slow variables—a tau-leaping approximation was introduced [32]. Instead
of sampling exponentially distributed times between reactions firing, one can sample the
number of reactions that could have fired within a fixed interval from a Poisson distribution.
Poisson tau-leaping incorporates this technique to produce quicker and, in most cases, a
predictable number of time steps.

Nevertheless, it tends to be unreliable for smaller populations of molecules. For example,
suppose we have two X molecules and some reaction RX with molecule X as a reactant. A
possibility is to randomly sample three instances of reaction RX firing within a time step.
This is impossible because insufficient reactants lead to a negative population.

Various efforts have been presented to overcome this, including leap rejection and falling
back to an exact SSA [33], sampling from a Binomial distribution [34], and adaptively
shrinking the step sizes [35]. While it is highly efficient for large populations, its main
shortcoming is dealing with small populations, making it unsuitable for modelling binary
or a small number of gene states.

3.1.3 Matrix Exponential Solution

Given a biochemical system whose population sizes for each molecule are decomposable into
a finite state CTMC, a simple iterative application of its transition matrix allows a similar
finite-step procedure. Rather than sample how many reactions go off in a given interval, one
can sample the next state—a snapshot of the system—from the chain’s transition matrix,
given by the matrix exponential solution to the one-step chemical master equation

Pt = etQ

The procedure is reminiscent of methods using a discrete-time Markov chain (DTMC) to
represent a CTMC. We note its distinction, however. One approach simulates the embedded

13
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jump chain with exponentially distributed times between jumps. This is equivalent to
Gillespie’s algorithm. Another method called uniformisation incorporates holding times at
each state into a DTMC given by

P = I+
1

q
Q

where q = max{qii}i∈E , i.e. the maximum of the generator’s diagonal. The number of state
changes is sampled from a Poisson distribution and uniformly distributed across a fixed time
interval [0, T ] [36]. These methods produce trajectories for the CTMC, whereas the proposed
method produces snapshots of the CTMC’s trajectories. That is, jumps could have occurred
between two snapshots, but this becomes unlikely given a carefully chosen time step with
respect to the holding times. Despite being inexact, a primary advantage is having constant
time steps and thus vectorisation opportunities and allowing a natural approximation for
non-homogeneous transition rates.

This method becomes impractical in the combinatorial explosion of population sizes and
unusable in most settings where an unbounded number of molecules contribute to an
infinite number of states. Transition probabilities within deeply coupled systems are not
trivial either. A finite number of gene states does not suffer from these, making the method
suitable.

3.2 Mutual Information Estimation

With trajectories of the gene’s activity for each environment, the mutual information between
the gene and the cell’s environmental identity can be estimated. This quantity measures
the distinctive quality of the gene’s signalling responses under different stresses, indicative
of the cell’s decision-making capabilities. We highlight two recent methods for estimating
mutual information from intracellular time series data.

3.2.1 Decoding-Based Estimation

A decoding-based approach first labels the trajectories of the gene’s activity according to
its environment. Next, a machine-learning classifier is fit on a portion of the data, and its
performance is evaluated on a held-out data set [12]. This produces a confusion matrix

M =
(
P
(
Ŷ = yj | Y = yi

))
i,j∈E

where Y and Ŷ are the true and predicted environment labels respectively. The marginal
probabilities can then be calculated to compute the mutual information. This yields a
lower bound estimate given the information loss in training the classifier [12, 37], as the
data-processing inequality requires. A highlight of this method is its flexibility with the
choice of a classifier algorithm, a few of which have been previously tested.

Support vector machines (SVM) with radial basis functions have been shown to produce
robust estimates regardless of the number of samples or dimensionality of the data [38], i.e.
the length of the time series. However, when linear principal components are used to train
the classifier under a different basis, it is unable to fully discriminate against dynamical
patterns such as oscillations and random permutations [39]. Neural networks capture far
more complex abstractions and have also been demonstrated to be comparable and better at
times than SVM when a large number of samples are available [38]. Thus, the choice of a
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classifier primarily depends on the size and complexity of the data as well as training and
prediction speeds, among many others.

3.2.2 Stochastic Model-Based Estimation

A recent study by Tang et. al [37] proposed the use of Hidden Markov models (HMMs) and
time-inhomogeneous DTMCs to learn the dynamics of a biochemical signalling molecule,
i.e. a TF, and thus quantify the information accumulation within their signals. They propose
a dynamic mutual information (dMI) measure capable of taking advantage of the entire time
series, whereas MI estimates from other approaches saturate over time. It further addresses
the insensitivity of other approaches to random permutations in the time series.

The resulting Markov chain structures are supposed to capture the activity of a single TF
for a specific type of stress. We remark that these mainly serve as a stepping stone for the
estimation of MI rather than the inference of TF properties, particularly given their large
sizes—a 64-state model with 32 emission states, for example, was found optimal for the
HMM. Moreover, training a HMM is rather computationally expensive compared to some
classifier choices under the decoding-based method. They note a computational time on the
order of 10 hours on a personal computer. While this may be acceptable for a limited number
of ensembles, the specific goals of the study—one which involves the evaluation of over ten
thousand different trajectory ensembles for each of multiple TFs—require otherwise.

3.3 Evolutionary Algorithms

Whereas differentiable functions can be optimised through gradient descent, functions with
no direct access to their gradients require black-box optimisation techniques. Evolutionary
algorithms (EA) are examples of such methods that mimic natural evolution to search for
optimised solutions for black-box functions with a potentially vast parameter space. It is
characterised by evolving a population of individuals, each corresponding to a point in the
space [40].

We first outline genetic algorithms, a subclass of EAs, and further their use towards a
multi-objective aim involving the diversity of individuals through novelty search.

3.3.1 Genetic Algorithms

The rationale behind genetic algorithms (GA) is to portray individuals based on their set of
genes—their genome—and evolve the population through a Darwinian natural selection
process. Holland [41] first proposed the idea with canonical representations of individuals
taking the form of binary strings of fixed length [40], akin to genes. Like other EAs,
individuals are subjected to randomised processes in the selection, mutation, and crossover
operators.

Recently, the line between GAs and other EA subclasses, notably evolutionary strategies,
has blurred with the introduction of far more complex genome structures. However, the
focal point of GAs has ultimately remained the same, and for the rest of the paper, we shall
address algorithms outlined here as GAs despite their non-canonical genomes.

An overview of the genetic algorithm process is as follows: a population of individuals is first
evaluated based on their fitness, a possibly black-box measure of their quality. At this stage,
elitism is a commonly employed technique to ensure the best fitness monotonically increases
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per generation. Under elitism, a percentage of the fittest individuals are guaranteed a spot
for the next generation [42]. Then, a set of individuals are selected as parents. Each pair of
parents have their genes crossovered to yield two offspring. Offspring are then mutated by
chance and added to the pool of individuals for the next generation. The process continues
until the maximum number of generations is reached.

Undeniably, genetic operators heavily influence the evolutionary search. We outline their
specifics and relevant developments.

3.3.1.1 Mutation

Mutations act on an individual’s genome by adding slight variations, typically in a proba-
bilistic manner. For example, bits can be randomly flipped in canonical binary strings [40],
and Gaussian noise can be added to real-valued vectors [43].

The mutation rate controls a delicate balance between the search ground covered and the
speed of convergence. With a low mutation rate, the search is not as incentivised to explore
nearby solutions. With a high mutation rate, the search is more likely to escape local optima
but at the cost of slower convergence. As the optimal rates vary per problem, adaptive
mutation rates have been considered to avoid trial and error tuning [44]. More than one
mutation operator may be used at a time, which can also be adaptive [45].

3.3.1.2 Crossover

A crossover, also known as a recombination, is the combination of features from two different
individuals, forming two offspring individuals containing genes from both parents. A well-
known example is a uniform crossover. Given two linear (one-dimensional) genomes of the
same length, a random crossover point is uniformly sampled between the start and end of
the genome. The genomes are split in half at these points, and the left cut of one parent
is combined with the right cut of the other to form an offspring. An extension of this idea
is selecting k points and alternating which parent an offspring gets its genes from. This is
called an k-point uniform crossover [46].

When individual genomes take the form of graphs, a uniform crossover may still be per-
formed on their adjacency matrices [47, 48]. However, this act of ”flattening” the genome
loses inherent graph properties such as connectivity. As such, a linear crossover does not
guarantee feasibility, say, in the connectivity sense, in offspring. While penalising or discard-
ing unfeasible individuals is possible, it is suggested that designing constraint-preserving
crossover operators leads to a more efficient and less risky search [49]. Existing non-linear
graph crossovers primarily split graphs into subgraphs and recombine pairs of subgraphs
from different parents [50, 51, 52].

3.3.1.3 Selection

When selecting parents for crossover, fitter individuals are usually granted some advantage
in being selected. The tendency to do so is known as selective pressure. With high selective
pressure, a fit non-optimal individual may skew the search into having an identical non-
optimal genotype. This decreases the genetic diversity, and the search prematurely converges
[53]. Two examples of selection schemes are discussed.

Roulette wheel selection chooses individuals proportional to their fitness values. In a
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population of N , each individual ai has a probability of being selected, given by

P(ai) =
f(ai)∑N
j=1 f(aj)

where f is the fitness function [53]. The roulette wheel is spun n times, choosing n indi-
viduals. In this scheme, the magnitude of the difference between fitnesses influences the
likelihood of selection. As such, nearly identical fitness values make it difficult to move
towards better individuals. Moreover, while it promotes diversity by giving each individual
a chance of getting selected, an especially fit individual at the start may lead to premature
convergence [54]. Holland [41] originally employs a similar method.

On the other hand, k-tournament selection first selects k individuals at random. They then
compete in a tournament, and the individual with the highest fitness is chosen [54]. Unlike
the roulette wheel, the specific fitness values do not affect the selection. Its efficiency and
parallelisability have also made it a popular method with binary (k = 2) and slightly larger
tournaments as common choices [53]. Furthermore, the choice for k allows a controllable
parameter for selective pressure.

3.3.1.4 Multi-Objective Search

Classical GAs aim to optimise individuals based on a single fitness value. In practice, it may
be desirable to quantify an individual’s fitness in more than one way. For example, a product
may be evaluated based on its manufacturing cost and structural durability. Multi-objective
searches use the notion of Pareto dominance to address this.

Suppose the target function to maximise, f , has n components as follows

f(x) = (f1(x), . . . , fn(x))

for some vector x in the space of solutions U . For xu,xv ∈ U , let u = f(xu) and v = f(xv).
We say xv dominates xu if

1. All its entries are greater or equal: ∀i ∈ {1, . . . , n}, vi ≥ ui.

2. At least one of its entries is greater: ∃i ∈ {1, . . . , n} | vi > ui.

A decision vector xu is defined to be Pareto-optimal if there is no xv ∈ U which dominates it
[55]. The set of all Pareto-optimal solutions is called the Pareto front. It is certainly possible
that a solution neither dominates nor is dominated.

A notable development is the non-dominated sorting genetic algorithm (NSGA), which
took a Pareto-based approach and was later adapted to NSGA-II to incorporate elitism [56].
It sorts individuals according to their front number, i.e. the number of individuals it is
dominated by, and uses this over traditional fitness for elitism and selection. However, it is
found that Pareto fronts usually lack diversity. A crowding distance measure was suggested
to alleviate such concerns [57]. The next subsection examines a diversity-focused search that
is eventually paired with NSGA-II.

3.3.2 Novelty Search

Lehman and Stanley [58] highlight the deceptive landscape of objective (fitness) functions
and their affinity towards local optima as main proponents of a search for novelty. They argue
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that objective functions may not incentivise reaching stepping stones, potentially sub-optimal
points in the search space that can lead to the overarching objective. Their initial proposal is
driving the evolutionary search without an objective function but simply with novelty.

A measure for the novelty of an individual x is defined to be the average distance to its k
nearest neighbours,

ρ(x) =
1

k

k∑
i=0

d(x, µi)

where d is a distance measure, also called the novelty metric, and µi is the ith nearest
neighbour of x under the measure d. An archive of past individuals with novel behaviours
is maintained throughout, and the distance calculations are done with respect to both the
archive and the entire population. Individuals are added to the archive when their novelty
score exceeds some threshold. This incentive for diverging behaviour, however, potentially
makes convergence difficult.

3.3.2.1 Local Competition

A follow-up to their novelty search, Lehman and Stanley [59] introduce fitness through
competition for a multiobjective search involving fitness and novelty, thereby rewarding
good performance and diverse morphologies. It uses an NSGA-II scheme without needing
an explicit diversity-preserving measure within Pareto fronts, as the novelty objective is
assumed to capture genotypic diversity already.

The local fitness score of an individual x is defined to be the number of its k nearest
neighbours for which it outperforms,

flocal(x) = |{µi ∈ neighbours(x) | f(x) > f(µi)}|

When pitted against fitness-only, novelty-only, and novelty with global competition schemes,
it finds comparable maximum absolute performance. Further, it outperforms the others in
terms of its exploration of niche behaviours. Methods with this attribute of finding fit and
diverse individuals are summarised under Quality-Diversity algorithms [60].

3.3.2.2 Archival Management Strategies

In traditional novelty search, the archive serves as a reference for novelty calculations of the
current population. An intuitive extension sees the archive as the end result of the search
and treats its maintenance as building a repertoire of behaviours [61]. A novelty search
takes place, but when an individual is found to be better than a nearly identical individual
in the archive, it replaces the archived individual.

Archives can primarily be classified as structured or unstructured, depending on an individ-
ual’s genome. For example, individuals with a vector representation, albeit high-dimensional,
can be allocated on a discrete grid where cells correspond to some range of parameter values
[62]. A single individual occupies each cell, and the search drives these individuals to be
fitter over time through replacement. This structure allows for an interpretable collection
of behaviours. In the unstructured case, where only the distances between individuals are
available, care must be taken to arrive at an analogous uniform collection.

In an unstructured archive, this technique can lead to an uneven density of the collection
and erosion of its border. A maximal density parameter, i.e. a fixed novelty threshold, and a

18



Chapter 3. Background 3.4. METRICS AND SIMILARITY INSTRUMENTS

modified Pareto dominance scheme for replacing archived solutions have been sufficient
to resolve these issues [61]. The difference is as follows: given a novelty threshold l, an
individual is archived if its distance to its nearest neighbour is less than l, its distance to its
second nearest neighbour is greater than l, and within some error ϵ, the individual dominates
its nearest neighbour.

3.4 Metrics and Similarity Instruments

Deciding the similarity between two objects is a task common to many domains. In particular,
novelty search necessitates a well-defined distance measure between individuals and their
efficient calculation. This section summarises the use of metrics for search and relevant
similarity measures.

3.4.1 Similarity Search in Metric Spaces

Given a set of objects X and any x, y, z ∈ X, a function d : X×X→ R is said to be a distance
metric if it satisfies the following properties:

1. Reflexivity: d(x, x) = 0

2. Positivity: d(x, y) ≥ 0

3. Symmetry: d(x, y) = d(y, x)

4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

If d is a metric, then the pair (X, d) is called a metric space. While these seem to be strict
well-behaved mathematical objects, they appear in many practical applications such as
database retrieval and video compression, most notably for similarity searches [63].

The data set of objects U ⊆ X considered within the metric space has an important quality
in its intrinsic dimensionality. This concept refers to the minimum number of parameters
sufficient to express or describe the data [64]. For example, the set of all three-dimensional
points lying on a specific plane has an intrinsic dimensionality of two despite its three-
dimensional representation. In fact, there are ways to estimate this quantity directly from
the data set [64, 65].

The curse of dimensionality has large effects on a metric space. As an example, consider an
arbitrary d-dimensional point lying within a unit hypercube. It can be shown that the volume
of a unit hypersphere divided by that of a unit hypercube goes to zero as the dimension
d tends to infinity [66]. That is to say, much of high-dimensional space is far from the
origin. Now, framing any point as the origin for reference precisely explains why the average
distance between a point and its nearest neighbours increases with dimension. For relatively
low dimensions, however, metric spaces still offer desirable properties.

Space-partitioning data structures go hand in hand with metric spaces to allow efficient
queries for proximity and nearest neighbour (NN) searches, often by constructing a tree
where each subtree partitions the search space. For arbitrary metric spaces, several examples
include vantage point trees, also called metric trees [67], M-trees [68], and cover trees [69].
These methods primarily rely on the triangle inequality to prune the search and are effective
for low-dimensional data. Whereas a brute-force NN search requires O(n) complexity,
a cover tree, for example, requires O(c12 log n) in the worst case, where c is dubbed the
bounded expansion constant. To give some context, in a uniform data set U with dimension
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d, c ∼ 2d [69]. In high dimensions, the distances between points become nearly identical
and the pruning condition is almost never met. Therefore, these methods require a careful
judgement of the data’s intrinsic dimensionality.

3.4.2 Statistical Distances

Multiple measures exist that quantify the dissimilarity between two probability distributions.
Below, we highlight two of significance.

3.4.2.1 Jensen-Shannon Divergence

Suppose we have two discrete probability distributions P = (p1, . . . , pn) and Q = (q1, . . . , qn).
Recall that the KL divergence between P and Q is

dKL(P∥Q) =
n∑

i=1

pi log2

(
pi
qi

)
which is a non-symmetric measure. The Jensen-Shannon divergence offers a symmetric,
bounded, and well-defined extension, as given by

dJS(P∥Q) =
1

2
dKL (P∥R) +

1

2
dKL (Q∥R)

= H(R)− 1

2
[H(P ) + H(Q)]

where R = (P +Q)/2 [70]. Like KL divergence, it has some information-theoretic interpreta-
tions [71]. Furthermore, it has been shown to be the square of a distance metric [70], making
it suitable for metric space construction.

3.4.2.2 Wasserstein Distance

Suppose we have two probability distributions µ and ν on a metric space X. The p-
Wasserstein distance between µ and ν is analytically given as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×X

d(x, y)p dγ(x, y)

)1/p

where Γ(µ, ν) is the set of probability measures γ on X × X with γ(A × X) = µ(A) and
γ(X×B) = ν(B) and d is often the Euclidean distance [72]. Among many other names, it
is also known as the earth mover’s distance with its ties to optimal transport theory. One
distribution can be interpreted as the mass of dirt spread across some space and the other as
a set of holes within the same space. This measures the minimum work required to fill the
holes with dirt, where the cost is proportional to the amount of dirt and the ground distance
covered [73].

A useful result is that Wp is a distance metric and persists to be a metric when (X, d) is a
metric space [72]. Combining this together with a scheme for graph isomorphism tests,
Togninalli et. al [74] proposed a distance metric between labelled graphs—the Wasserstein
Weisfeiler-Lehman distance. In it, they consider the p = 1 discrete case, where the distributions
are given by two vectors X ∈ Rn×m and X ′ ∈ Rn′×m resulting in

W1(X,X ′) = min
P∈Γ(X,X′)

⟨P,D⟩
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where D is the pairwise distance matrix between all elements in X and X ′; P ∈ Γ is the
transport matrix, often assumed to be a uniform distribution; and ⟨·, ·⟩ is the dot product.
First, the Weisfeiler-Lehman embedding scheme is iteratively performed m-times to produce
feature vectors X and X ′ from graphs G and G′. For discrete labels, we have

X =

 l0(v1) l1(v1) . . . lm(v1)
...

...
. . .

...
l0(v|G|) l1(v|G|) . . . lm(v|G|)

 , lh(v) =

{
l(v) h = 0

hash(lh−1(v),N h−1(v)) h ≥ 1

where l(v) is the original label of vertex v and N h(v) is the set of labels at iteration h of
vertices neighbouring v. Ideally, a perfect hash is used. Then, the Hamming distance is
computed between each graph embedding X and X ′, yielding the matrix M . Finally, a
network simplex method is employed to calculate the expression [74].

3.5 Related Work

The study again aims to infer interpretable transcription models for yeast cells that maximise
the mutual information between a cell’s environmental identity and gene activity. In doing
so, it naturally aims to develop an efficient methodology for such tasks. In this section, we
briefly highlight similar works and their significance.

Granados et. al [12] first explored how extracellular information may be organised inside
a yeast cell. They consider multiple TFs and measure their nuclear concentration after
inducing different types and levels of stress across trials. The mutual information between
the TF traces and the environment, together with discrete stress levels, were quantified,
and analysis focused on the encoding specificity and redundancy of TFs. The study builds
upon their work by proposing concrete transcription regulation mechanisms with their
measurements as ground truth.

A precursor to this study is the work of Bobrowski [13], which considered a finite set of small
(2-4 state) transcription models with a similar goal of optimising their mutual information.
Each model took the form of a DTMC and was given a fixed structure. A pipeline was
established with the Extrande algorithm to simulate single trajectories and an SVM decoder
for estimation. Particle swarm was used to optimise the reaction rates. However, due to the
high complexity of exact SSA methods and the strong constraints involved with the model
architectures, their method becomes intractable for larger, more general situations. The
study improves upon their methodology by proposing a more efficient pipeline set-up and a
genetic algorithm scheme that searches through an arbitrarily large solution space.

A number of studies have described types of promoter architectures with discrete activity
states [75, 11]. A few, however, have derived architectures through systematic procedures
from experimental findings. An example is the work of Neuert et. al [10], which derived a
four-state transcription model for yeast cells undergoing osmotic stress. Their study first
considers two- to five-state models and fits their time-varying probability distributions with
their experimental mRNA distributions, allowing transition rates to depend on one TF. Then,
after a cross-validation test indicates a four-state model’s expressive yet non-overfitting
choice, they demonstrate its generality by showing its ability to fit data when a different TF
is used. As is typical with inference studies, a model’s performance is compared against the
true mRNA expression. This study, however, goes against this convention by maximising a
mutual information measure instead.
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Chapter 4

Transcriptional Architectures

This chapter illustrates how the study models gene activation. We first define promoter
models together with their constraints. Lastly, we put forward a method for randomly
generating promoter models given a fixed number of states.

4.1 Promoter Models

A promoter model is framed as a time-inhomogenous continuous-time Markov chain (CTMC)
whose states describe the amount (or likelihood) of activity within the promoter region. In
the most general sense, each state has an associated weight, all of which sum to one, e.g. an
inactive state has weight zero. Note the system is decoupled from mRNA and reduced to
gene activity, as will be justified in the next section.

We define models by an activity array A and a generator matrix Q whose entries correspond
to the exponential rate parameters associated with jumping between states. These rates are
considered to either be constant or linearly dependent on the concentration of a TF. As the
concentration changes with time, we express the generator as a function of time.

E.g. the generator and activity array
below defines the model in Fig. 4.1.

Q(t) =

[
q11 0.459 0

4.244·TF1(t) q22 0.131·TF2(t)
0 0.055 q33

]
A = [0.66, 0.00, 0.34]

where qii = −
∑

j ̸=i qij and TFX(t) is
the concentration of a TF X at time t.

A0
0.66

A1
0.34

I0
0.459

0.055

4.244 · TF1

0.131 · TF2

Figure 4.1: A three-state promoter model with one
inactive and two distinct active states.

We further explore three paradigms of gene activity with increasing generality and abbreviate
them for conciseness. The first, one active state (OAS), is the simplest yet most widely
accepted belief in current research. In OAS, a single state has a weight of one, and the rest
have a weight of zero. The second, multiple active states (MAS), is less strict, allowing more
complex dynamics. MAS deals with multiple discrete, i.e. indistinguishable, active states.
The third, spectrum of weighted activities (SWA), is yet another viewpoint held by studies
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to explain more complicated mRNA traces. SWA is the largest superset allowing states to
take on continuous, likely different, activity values.

From an information-theoretic point of view, SWA is more capable of producing distinctive
activity traces. However, this comes at the cost of a significantly larger solution space. These
classes represent differing complexities involved in modelling transcription bursts.

A0

I0

I1

I2

0.088

2.481

1.149

2.551 · TF1

0.620 · TF2

0.415

A0

I0

I1

A1

I2

I3

0.746

3.695 · TF1

0.382

0.216

1.330 · TF0

1.714

0.759

2.840

0.606

0.163

A0
0.20

A1
0.60

I0

A2
0.20

0.738

3.854

0.024

4.241 · TF2

3.930

0.908 0.120 · TF3

2.582

Figure 4.2: Example models under paradigms: (Left) OAS, (Middle) MAS, and (Right) SWA.

4.1.1 Model Constraints

Irrespective of their classes, promoter models are also assumed to follow a main set of
constraints given as follows:

1. Connectedness: every state must be reachable from every other state, i.e. the chain is
irreducible. This is a natural simplification to avoid isolated components.

2. Reversibility of reactions: if there is an edge connecting state i to j, there must be
an edge connecting state j to i. This is biologically motivated, given the binding
mechanisms of TFs.

3. At least one active state: at least one state with non-zero weight must exist. For ease,
we impose this constraint on the first state. This rids of trivial inactive trajectories.

We call a model infeasible if it fails to meet any of the constraints.

4.2 Random Model Generation

Given a fixed number of states, we propose a way to construct an arbitrary model. Note that
the reversibility constraint allows us to treat the model as an undirected graph.

First, a uniform spanning tree is sampled via Wilson’s loop-erased random walk [76] to
construct an undirected skeleton graph. Next, each remaining unconnected edge is linked
with some fixed probability, e.g. 0.5. This produces a connected, undirected graph.

With the connections finalised, the skeleton is mapped back to a directed graph with twice
the number of edges. Then, each edge is assigned a random rate function. We allow them to
be constant or linearly dependent on a randomly assigned TF. The rates are then uniformly
sampled between [−2, 2] in the log10 space. This is due to the time scales of the data set.

Finally, states are assigned an activity. The first state is always set to be active to meet the
last constraint. In MAS and SWA, succeeding states are labelled active with some fixed
probability, e.g. 0.33. For OAS and MAS, active states are given a weight of one. For SWA,
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they are assigned a random weight from a standard uniform distribution. The activities are
then normalised to exact a sum of one. This is summarised in Alg. 2.

Algorithm 2: Random Model Generation

Input: no. of states: N, prob. of forming an edge: p edge, prob. of active state: p active

1: generator← N×N array of zeros
2: activity← N× 1 array of zeros
3: skeleton← sample uniform spanning tree(N)
4:
5: for (i, j) in skeleton.unconnected edges, with i < j do
6: u ∼ U(0, 1)
7: if u < p edge then
8: skeleton[i, j]← 1
9: skeleton[j, i]← 1

10: end if
11: end for
12:
13: for (i, j) in skeleton.connected edges do
14: generator[i, j]← get random rate function()
15: end for
16:
17: if OAS then
18: activity[0]← 1
19: else if MAS then
20: activity[0]← 1
21: for n← 1 . . .N− 1 do
22: u ∼ U(0, 1)
23: if u < p active then
24: activity[n]← 1
25: end if
26: end for
27: else if SWA then
28: activity[0] ∼ U(0, 1)
29: for n← 1 . . .N− 1 do
30: activity[n] ∼ U(0, 1)
31: end for
32: end if
33: activity← activity/

∑N
n=0 activity[n]

Our method satisfies the constraints and allows tunable parameters for the sparsity and ac-
tivity levels of models. For instance, shown in Fig. 4.3 are increasingly complex architectures.

Figure 4.3: Silhouettes of randomly generated models. Columns indicate the number of states
ranging from two to ten, and rows correspond to values pedge = 0, 0.5, and 1.
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Chapter 5

Evaluation Pipeline

This chapter introduces a pipeline for evaluating the performance of any promoter model.
First, its trajectories under different environments are simulated to produce a collection of
time series data for gene activity. The mutual information (MI) between its activity and the
environment it encodes is then estimated under a decoding-based framework.

5.1 Promoter Activity Simulation

Given an experimental data set containing the nuclear concentration of individual TFs, the
generator of a model Q(t) can be realised across the time stamps for which measurements
were recorded. This yields a collection of instantaneous generators {Q(t0), . . . ,Q(tNt)}. We
have multiple instances of these sets, as measurements are replicated across Ncells trials,
typically over a hundred, and across Nenv different environments. As stochastic simulations
tend to be noisy, particularly for those with discrete activities, we further perform Nreps

replicates. In total, we have Nenv×Ncells×Nreps trajectories to simulate from these generators.
We later show the method can do so under the time it takes one SSA trajectory.

5.1.1 Simulation through Matrix Exponentials

Most interesting biochemical systems have coupled reactions involving many molecules. In
the case of a transcription model, the only substances are the gene states and the mRNA it
produces when active. However, the data processing inequality assumes a lower MI with
mRNA traces compared to the gene’s activity. For this reason, mRNA can be decoupled from
the system, leaving a master equation solely for switching finite gene states. In this scenario,
an exact SSA decomposes into a CTMC simulation. Given explicit generators for our CTMC
model, we can take fixed step sizes through the simulation.

The basis of this method lies in the (one-step) chemical master equation and its solution

P′
t = PtQ, Pt = etQ

where Pt is the transition matrix after an elapsed time t, and Q is the generator matrix of
the chain. Given τ > 0, the transition matrix at time t+ τ can be given as

Pt+τ = PtPτ = Pte
τQ
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However, as we are dealing with a time-inhomogeneous chain, the above results generally
do not hold. This is where an approximation is taken. Provided a carefully chosen time step
τ , we may assume the chain is time-homogeneous and derive the expression

Pt+τ = Pte
τQ(t+τ)

Note then that, at each time step t, a probability distribution for the states at t+ τ can be
computed through xtPt+τ where xt is a binary vector representing the chain’s state at time
t. The next state is thus chosen based on this distribution. Beginning with the chain in
one state, we can efficiently step through the simulation. A main improvement over exact
SSA is its parallelisability and fixed simulation time. This is also helpful as experimental
measurements are taken in constant time intervals.

5.1.2 Batching of Cells and Replicates

Matrix exponentials are first pre-computed by batching them together for each environment,
cell sample, and time step. After conducting tests, a Pade approximation [77] was chosen as
Taylor series expansions often led to a non-stochastic Pt and would only converge past 20
terms. As calculations overflow for large parameters, the generator is first scaled by some 2k

and subsequently used to calculate exp(τQ) =
(
exp( τ

2k
Q)
)2k . The choice of powers of two

allows more straightforward matrix exponents.

After rearranging the axes as appropriate, this leads to a tensor G with

G ∈ RNt×Nenv×Ncells×Nstates×Nstates

The simulation can thus be carried out. A state xt0 is first uniformly chosen. Then, at each
time step, a probability distribution for the next state is calculated, and a state is randomly
selected. Upon choosing a state i at time t, we aim to calculate the probability distribution
of the next state, i.e.

[Pt+τ ]i =
[
Pte

τQ(t+τ)
]
i
= [Pt]ie

τQ(t+τ)

We assign [Pt]i = xt, which is a vector of zeros except at the ith entry. Hence the iterative
procedure can be continued until the simulation ends. Notice also that if we never realise
the chosen state, that is, keep [Pt]i as a probability distribution, then this produces a time
series of the state distribution of the chain. This fact is used later on.

To perform all these calculations efficiently, they are similarly batched. Denote by the tensor
D[t] the batched probability distributions of the next state at time t, i.e. [Pt]i if i was the
previous state, with

D[t] ∈ RNenv×Nreps×Ncells×Nstates

This can be used to compute another tensor of the same shape, S[t], the indicator of the
current state. We do so by finding the cumulative sum of D[t] in the last axis, sampling a
tensor R from a uniform distribution, and searching the maximum indices in D[t] for which
the uniform numbers are less than its entries.

At each time point t, we thus calculate the product of the tensors

D[t+ τ ]ijkm =
∑

S[t]ijklG[t]ijlm

and again solve for the state tensor. In doing so, we find a time series of the chosen states S.
This collectively simulates Nenv ×Ncells ×Nreps trajectories together.
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5.1.3 Benchmarks

5.1.3.1 Time Scales

Our method relies on the value of τ for the time-homogeneity assumption to be reasonable.
Unlike the Gillespie algorithm, the time steps of our method are fixed, and thus its simulation
times are not affected when rates are large. And so, we briefly explore if there are any effects
when rates are varied under our method. Consider, for example, a generator Q(t) and a
choice for τ . Now, suppose we scale all the rate parameters by k. Then we assume

Pt+τ = Pte
τkQ(t+τ)

which is equivalent to a choice of τ ′ = kτ .

When τ ≫ 1, the average trajectory approaches a fixed value. To see this, let 1 be a vector of
ones and consider the homogeneous case where Qδ = (Pδ − I)/δ. Then

eτQ1 = lim
δ→0

eτQδ1 = lim
δ→0

(
I1+

∞∑
i=1

τQ
δi

i!
1

)
= 1

and so the matrix exponential of the generator (of a stochastic semigroup) is stochastic.
For our fixed generator Q(t + τ), we also have that eτQ(t+τ) is stochastic. Recall that the
original chain is irreducible (and finite) by our model constraints, and so entries in eτQ(t+τ)

are non-zero. Consider the DTMC with a transition matrix equal to this matrix. It also
inherits irreducibility and hence a unique stationary distribution exists. For k large enough,
[(eτQ(t+τ))k]i is equivalent to its stationary distribution, and it becomes idempotent.
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Figure 5.1: Average activity of a yeast cell under carbon stress using (Left) Gillespie algorithm
and (Right) our approximation for values of k = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 5, 10. Data used
for the simulation is taken from Granados et. al [12]. Note that the initial state is uniformly
chosen, so activity begins at 0.33. These trends are an average of 100 replicates.

Shown in Fig. 5.1 are simulations under the Gillespie algorithm and our method for the
promoter model defined by the generator and activity array given below

Q(t) = k ·

(
−q11

1
2

1

TF2(t) −q22 1
1
2
TF3(t) 1 −q33

)
, A = [1, 0, 0]

In both methods, smoothing occurs for small k and higher peaks form for large k.
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5.1.3.2 Simulation Times

Using the scheme in Section 4.2, we randomly generate models and benchmark the average
time required to produce their trajectories. As standard deviations for the Gillespie algorithm
were found to be larger than the mean, the interquartile range is shown instead. The
trendlines are given below in Fig. 5.2. While our method’s execution times are not affected
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Figure 5.2: The average time taken under our method (left) and the median time for the Gillespie
algorithm with one replicate (right) as the number of states increases. Despite increasing
replicates, vectorisation within our method can keep simulation times within the same order of
magnitude. Error bars are standard deviations on the left and interquartile ranges on the right.
Each data point is an average across ten random models. TF data is also from Granados et. al
[12]. Simulations were run on a machine with Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz.

by the transition rates, Gillespie simulations tend to have an explosion of reactions when
the rates are high. Its duration increases with the number of states as more reactions can
fire. Further, with more states, the proportion of high rates varies more, likely causing large
variances in simulation times.

With more than five states, our method clearly outperforms the Gillespie algorithm in speed
and consistency of times. To make a fair comparison, we may consider the case of four-state
models, one of the more common promoter structures in studies. Note that we can increase
the throughput of our method with more replicates. However, there is not much incentive
past ten, which we later discuss in the next section.

A single simulation produces ∼400 trajectories for one replicate and ∼4000 trajectories for
ten. With each run taking ∼0.5s for a four-state model, our method has a throughput of one
trajectory per ∼1.25 × 10−4s. With one replicate under the Gillespie algorithm, each run
takes ∼20s, amounting to a throughput of one trajectory per 5×10−2s.

5.1.3.3 Memory Management

Matrices grow quadratically in size with the number of states. The section of code for which
the memory consumption peaks is when matrix exponentials are pre-computed. Batching
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Figure 5.3: Memory trends when a program simulating a 15-state model is profiled. Simulations
begin at around the 3.5s mark. Under a batched scheme, memory peaks twice as high compared
to an iterative scheme. Note that the total memory used at every 10−1s is sampled due to
profiling, adding to the simulation times.

them in five-dimensional tensors allows for quicker times but at the cost of a larger memory
footprint. Due to the constraints involved with total memory allowed within machines used
for the study, we iteratively compute matrix exponentials for models with over 15 states.
This reduces the memory consumption by more than half, as shown in Fig. 5.3.

5.2 Mutual Information Estimation

The next step of the pipeline is evaluating the mutual information from the collection of
trajectories labelled under different environments. In the study, we work with a decoding-
based approach.

5.2.1 Machine Learning Pipeline

Each trajectory corresponds to a cell being transferred from a rich to a stressful environment.
We call the time at which this transfer takes place as the origin. First, we splice the trajectories
M intervals before and after the origin. This produces two M -length cuts, one corresponding
to the gene’s status in a rich environment and the other in a stressful environment. Given we
have Nenv environments, each with Ntraj trajectories. We will have Nenv times as many rich
cuts as any other environmental stress cuts. We down-sample by randomly choosing Ntraj

out of all the rich cuts to maintain an equal number of samples per environment. Each of
the cuts is then labelled according to its environment.

Recall that we employ replicates in trajectories to capture a wider range of behaviour from
the possibly noisy trajectories. When shuffling the data, we require that the replicates
corresponding to the same cell sample are put together to ensure no data leakage leads to
overestimates of MI. Fifteen per cent of the data is assigned as the validation set, whereas
the rest is used for training and testing.

We then have a classification task to solve. In the case of a trivially poor model, all its
trajectories may be inactive. However, certain classifiers are not able to handle inputs having
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multiple labels. To deal with this, if the variance within the validation set is below a certain
threshold, an MI of zero is assigned prematurely.

The general pipeline is then as follows: input vectors are standardised, their principal
components are extracted, and these are fed to the classifier. A halving grid search is
performed with the validation set to tune the classifier’s hyperparameters under this pipeline.
With the remaining 85% of the data, it is split 70-15 for training and testing across a number
of bootstraps. For each bootstrap, we calculate the marginal probabilities from the confusion
matrix and solve for the MI. The mean of which is the output.

5.2.2 Classifier Selection

The ideal classifier is fast in its tuning, training, and predictions and accurate in its assess-
ments. We consider four different classifiers that may fall under this umbrella: support
vector machines (SVM), random forest (RF), decision trees (DT), and naive Bayes (NB).
We note that k-NN with dynamic time warping and neural networks were tested but were
considerably slower, despite possibly providing better performance.

This part of the study is a balancing act. We aim to have the simulation and decoding times
within the same order of magnitude for an accurate and high throughput pipeline. The two
main parameters are the number of replicates and the type of classifier.

SVM Random Forest Decision Trees Naive Bayes 2 4 8

1
0.912s

0.301±0.016b
10.344s

0.198±0.054b
1.889s

0.268±0.021b
1.167s

0.352±0.031b
0.055s 0.513s 0.922s

2
1.597s

0.362±0.029b
12.346s

0.212±0.035b
2.747s

0.268±0.072b
1.548s

0.399±0.019b
0.052s 0.520s 0.649s

5
4.384s

0.452±0.010b
15.576s

0.363±0.028b
4.552s

0.277±0.074b
1.820s

0.438±0.011b
0.080s 0.541s 0.680s

10
7.073s

0.491±0.014b
17.599s

0.389±0.016b
5.595s

0.399±0.009b
1.935s

0.479±0.009b
0.098s 0.572s 0.726s

20
22.335s

0.523±0.008b
20.900s

0.447±0.015b
9.334s

0.446±0.026b
2.416s

0.488±0.005b
0.156s 0.645s 1.308s

50
109.636s

0.540±0.008b
29.787s

0.475±0.012b
15.787s

0.465±0.007b
4.223s

0.501±0.005b
0.319s 0.845s 1.309s

Table 5.1: (Left) Decoding times and MI estimates for a fixed two-state model as the number
of replicates and the classifier are varied (average of five trials). (Right) Simulation times for
two, four, and eight-state models as the number of replicates is varied (average of ten trials).
Simulations were run on a machine with Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz.

With more replicates, the information lost from simulating a stochastic trajectory is min-
imised, resulting in better classifier performance. However, this comes with bigger a dataset,
prolonging the decoding time. Similarly, some classifiers are better at certain tasks but at
the expense of longer fitting times. A summary of benchmarks is listed in Table 5.1.

While SVM can classify trajectories best, it scales poorly with the number of samples and can-
not fully use the additional information from more replicates in a reasonable time. Random
forest scales better but is orders of magnitude far from typical simulation times, as shown in
the right table. Decision trees are much faster but require far too many replicates to perform
at par with the rest. Gaussian naive Bayes is the fastest and produces comparable results
with SVM. We find the trade-off between near simulation and decoding times and classifier
performance is best met with a naive Bayes classifier with ten trajectory replicates.

We further remark that the MI stagnates after a certain number of replicates.
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5.2.3 Soundness of Estimates

By the data-processing inequality, the MI computed from a model’s trajectories is bounded
above by the MI computed from the nuclear concentration data of all the TFs it depends on.
A simple test for the robustness of our procedure is to check that the MI calculated from,
say, the concatenation of data from two TFs is not lower than the MI calculated from just
one of the two. We use five TFs from the Granados et. al study [12], namely maf1, mig1,
dot6, tod6, and sfp1. Below in Table 5.2 are the findings.

TF Group MI TF Group MI
maf1 0.615 maf1, mig1, dot6 1.564

mig1 0.940 maf1, mig1, tod6 1.392

dot6 1.107 maf1, mig1, sfp1 1.463

tod6 0.646 maf1, dot6, tod6 1.388

sfp1 0.726 maf1, dot6, sfp1 1.423

maf1, mig1 1.197 maf1, tod6, sfp1 1.262

maf1, dot6 1.160 mig1, dot6, tod6 1.553

maf1, tod6 0.959 mig1, dot6, sfp1 1.634
maf1, sfp1 1.053 mig1, tod6, sfp1 1.452

mig1, dot6 1.458 dot6, tod6, sfp1 1.458

mig1, tod6 1.184 maf1, mig1, dot6, tod6 1.648

mig1, sfp1 1.350 maf1, mig1, dot6, sfp1 1.717

dot6, tod6 1.264 maf1, mig1, tod6, sfp1 1.621

dot6, sfp1 1.323 maf1, dot6, tod6, sfp1 1.565

tod6, sfp1 1.064 mig1, dot6, tod6, sfp1 1.718

maf1, mig1, dot6, tod6, sfp1 1.774

Table 5.2: MI estimates for the concatenated nuclear concentration of combinations of TFs using
the naive Bayes classifier. In bold are the highest MI estimates per group size.

Indeed, the MI increases with more TFs. Notably, the redundancy in the encoding between
TFs can be estimated and behaves as expected, i.e. their MI, when concatenated together, is
less than or equal to the sum of their individual MIs. These figures serve as a reference for
the maximum MI attainable by our models, given the choice of our classifier.
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Chapter 6

Experimental Setup

This chapter discusses the study’s setup for optimising models by means of evolution. To
begin with, we describe the data set used for the previous benchmarks and the rest of
the study. We then explain how the genetic algorithm is to be structured and the genetic
operators involved. Finally, we discuss the adjustments made for novelty search and propose
our distance metrics for promoter models.

6.1 Exogenous Dataset

We use data from the Granados et. al [12] study to act as an exogenous input for our promoter
models. In it, they perform single-cell microscopy experiments by fluorescently tagging TFs
and measuring their brightness within the nucleus of yeast cells at intervals of 2.5 minutes.
The cells are kept within a rich medium for at least three hours and are subjected to either
carbon, osmotic, or oxidative stress for five hours. The change in fluorescence indicates the
movement of TFs in and out of the nucleus.

While ten TFs were examined in the original study, only five have nuclear marker measure-
ments that allow the proper scaling from their brightness to their concentration. These are
given by maf1, mig1, dot6, tod6, and sfp1, all of which are considered for this study.

6.1.1 Pre-processing

The accumulation of TFs within the nucleus is evaluated by the ratio between the mean of
the five brightest pixels within the cell and the median brightness of the whole cell, as was
briefly tested by the same study. With this measure and the nuclear marker data, a Gaussian
process is fit to predict the nuclear concentration of TFs from their fluorescence.

Our study assumes a fixed number of candidate cells, each with data on how TFs behave
across different environments within them. This is not possible, however, as each cell
sample is only tested for stress under one environment. To address this, we first find the
minimum number of cell samples across all trials for different stress exposures, 132 cells.
Then, we randomly assign to each candidate cell three unique measurements, one for each
environment, from the entire dataset. We finally scale the concentrations min-max between
zero and one per TF. When split across each environment, the resulting concentrations are
shown in Fig. 6.1. Clear bands are present as soon as cells are subjected to stress, some
occurring later or lasting longer than others.
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Figure 6.1: Concentrations of five TFs when introduced to different environmental conditions.
The x-axis is given by time, with each interval lasting 2.5 minutes, whereas each row corresponds
to a candidate cell. Note that the rich environment is down-sampled to be equal to the number
of candidate cells. Contrary to the majority, notice sfp1 leaves the nucleus when the cell is
subjected to stress, whereas mig1 exits only during carbon stress.
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6.2 Genetic Algorithm

We use a traditional genetic algorithm for optimising promoter architectures. Models are
assigned a fitness value equal to their MI output from the evaluation pipeline. Our operators
include a non-linear crossover, a range of mutations that can happen in succession, and a
conventional selection scheme. We also employ elitism to varying degrees.

6.2.1 Subgraph Swapping Crossover

We adapt the graph crossover by Globus et. al [50], originally intended for drug discovery, to
satisfy the three model constraints (see 4.1.1), whereby we expect the crossover to produce
two feasible offsprings given two feasible parents. While a one-point crossover on adjacency
matrices was initially tested, we find that this scheme of flattening the genome does not
capture the inherent characteristics of graphs, particularly with connectivity and subgraph
components.

Similar to generating models, we begin by treating the model as an undirected graph, given
the reversibility constraint. Each undirected edge corresponds to two directed edges with
varying transition rates. Furthermore, the graph is connected and contains at least one vertex
labelled as active as a consequence of the other two constraints. The two main components
of this procedure are the division of each graph into two subgraphs and the recombination
of two subgraphs, one from each parent, into an offspring.

Partitioning a connected graph into two connected subgraphs with the difference in their
number of vertices kept to a minimum is known as the balanced connected 2-partition
problem (BCP2). It is NP-hard [78]. While studies have proposed algorithms that can achieve
an approximate 4/3 split in the number of vertices [79], we believe that the randomised split
encourages more diversity within the resulting offspring.

Recall that we assume the first state of any model is active. We proceed by first choosing
a random edge connecting this vertex to any of its neighbours. We remove this edge and
add it to a set of broken edges. While we can still find a path between these two vertices, we
choose a random edge in the shortest path, remove it, and add it to the broken edges. This
process terminates with two connected subgraphs, possibly different in size, and a set of
broken edges.

For every pair of subgraphs, one must contain the first active state. We call this the primary
component and the other the secondary. The recombination stage takes a primary component
from one parent and a secondary component from the other and attempts to join them
together using the set of broken edges. This way, the offspring are guaranteed to have at
least one active state.

Previously, we classified each edge as undirected. Now, we split it into two directed parts.
We say an edge is a primary edge if it moves from a vertex in the primary component to a
vertex in the secondary component. Similarly, we call its complementary edge a secondary
edge. This effectively splits each set of broken edges into two, and we can assign each
subgraph component its own set of broken edges, e.g. a primary component is paired with
the set of broken primary edges from its original graph.

Now we consider merging two components, one primary and another secondary. We ran-
domly select two broken directed edges, one from each of their sets, merge them back into
an undirected edge, and link the two vertices these edges come from. If only broken primary
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edges remain, or analogously for secondary edges, we attempt to attach each to a random
vertex from any of the two components. If an edge already exists, a coin toss decides whether
to replace it or discard the broken edge.
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Figure 6.2: Two parent models (top row) and the
two offspring they produce under the subgraph
swap crossover (bottom row). Vertices and edges
coming from each parent are coloured.

This results in two offspring with some ge-
netic information from both parents. As
seen in Fig. 6.2, these come in the form of
possibly connected components from par-
ents. In some domains, an optimal solu-
tion can be found by incrementally reach-
ing stepping stones, e.g. creating efficient
building blocks. This crossover allows the
possibility of optimising small components
and putting them together to form a larger,
more effective system.

Due to the nature of the method, it does
not require the two parent models to have
the same number of states, as is usually the
case when a uniform crossover is performed
on their adjacency matrices. Hence, our
method can breed any two promoter models
and preserve their feasibility.

We remark that the total number of states
within a population of models stays the
same after a crossover. However, with mu-
tations and selective pressure, care must be
taken so models do not explode in size, as is
briefed in the discussion on penalties.

6.2.2 Mutation Operators

Mutations allow models to vary their architecture enough to explore a wider search space
and escape local optima. For each offspring, the following is a sequential list of mutations
considered, which is applied with some probability:

1. Edit an existing edge: Randomly initialise a rate function to replace an existing edge.
We set p = 0.4 for each edge.

2. Add an edge: Randomly add an edge between two states without direct connections.
We set p = 0.2 for each unconnected edge.

3. Edit a TF: Randomly select an edge linearly dependent on a TF and change its associ-
ated TF. We set p = 0.4 for each linear edge.

4. Gaussian noise on rates: Apply Gaussian noise to the log space rate parameters. The
resulting value is reflected inwards if it is beyond the bounds considered: [−2, 2]. We
set p = 0.8 for each edge.

5. Remove a vertex: Randomly remove a vertex. To preserve connectedness, neighbour-
ing vertices are grouped in communicating classes by union find, and each group’s
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randomly chosen representatives are connected. This does not apply to two-state
models nor affects the first state. We set p = 0.1.

6. Add a vertex: Randomly add a vertex. To preserve connectedness, it is connected to a
randomly chosen state and subsequent states are connected by some probability. Its
activity is decided on a coin flip. We set p = 0.1 for a model to undergo this mutation
and pedge = 0.25 for any subsequent states being connected.

7. Flip an activity: Randomly switch active, i.e. non-zero weight, states to inactive and
vice versa. In SWA, however, inactive states are given some uniformly sampled weight.
This does not apply under OAS nor affects the first state. We set p = 0.2 for each state.

8. Gaussian noise on activity: Apply Gaussian noise to the activity weights of some
states. We set p = 0.8 for each state.

We note the lack of an edge removal mutation, as this would require a bridge-locating
algorithm to keep the graph connected upon removal. Bridges are edges whose removal
causes a disconnection within the graph. If no bridge exists, the removal of any edge will
still require the addition of another. In its absence, the vertex removal mutation is included
to avoid pushing evolution towards denser graphs. By removing a vertex, at least one other
edge is removed. If connectivity is unsatisfied, one additional edge is enough to resolve this,
thereby causing a net loss in edge count on average.

We highlight the estimation required to set the mutation rates as a weakness of this method.
Due to the number of mutations, dynamic mutation rates may be difficult to test and set up,
so the rates are fixed instead.

6.2.3 Population and Selection

With multiprocessing code and 256 processors available, we consider population sizes: 500,
1000, and 1500. We set the number of iterations equal to the population size for simplicity.
The initial population is randomly generated through our scheme. We choose four or eight
as its initial number of states. Note, however, that the model’s size across generations will
vary because of the subgraph-swapping crossover. We also have three paradigms: OAS,
MAS, and SWA, each run with the same set of parameters. In selecting models for the next
generation, we introduce elitism with 5 or 10% of the population and use a 4-tournament
selection with replacement.

We find during testing that roulette selection may be unsuitable given the arbitrary scaling
of a model’s MI. Also, studies have mainly employed tournament selection for multiobjective
optimisation, and, to be consistent with our multiobjective goals in novelty search, we use a
tournament selection for the genetic algorithm. In agreement with other studies, we use a
tournament size of four, but mainly to keep selective pressure at a minimum, given the large
population size.

6.2.4 Fitness Penalty Schemes

Due to the many moving parts of the setup, it may be difficult to counteract any unwanted
genetic trends. For example, if the average number of states steadily increases per generation
due to an imbalanced application of mutations, we want to penalise models from becoming
exceedingly large. But also, if a larger number of states is what inherently produces better
fitness, then we want to keep this trend in our search.
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As with any modelling problem, a reduction in complexity is generally preferred. In practice,
no such transcription models have been proposed to be over ten states large, for instance. To
avoid this unnecessary complexity, we may employ a penalty that scales the MI proportional
to its number of states or possibly even edges. During initial testing, a penalty on the number
of states was employed and effectively kept the number of states below any given threshold.
However, removing the penalty did not produce any larger models. We hypothesise this is
attributed to going beyond the optimal architecture size and the curse of dimensionality. In
large models, most parameters must be set correctly to produce decent results. For example,
an inactive state could have very low transition rates, acting as an absorbing state and
keeping the gene inactive throughout. A smaller model, on the other hand, may only need a
few mutations before it is fully optimised.

Follow-up experiments involved penalising small models to give large models an advantage
and penalising models that deviate from a specific number of states, i.e. a penalty in both
directions. The findings of which are discussed in the results section.

However, we believe our mutations do not invoke bias that sways the search in any direction
other than the natural trend of evolution. Hence, we do not employ any penalties for the
traditional genetic algorithm.

6.3 Novelty Search with Local Competition

The genetic algorithm is adapted to operate in a multiobjective manner under the elitist
NSGA-II framework [56]. The two objectives are a model’s local fitness and novelty, as in
novelty search with local competition (NSLC) [59], given by

flocal(x) = |{µi ∈ neighbours(x) | f(x) > f(µi)}|, ρ(x) =
1

k

k∑
i=0

d(x, µi)

where f is the fitness function, i.e. the evaluation pipeline, and each µi represents the
model’s ith nearest neighbour. Similar to Lehman’s [59] study, we use k = 15 neighbours.
All other genetic operators are carried over from the genetic algorithm setup, except we fix a
population of 1000 and an elite ratio of 10%.

6.3.1 Archival Management

Unlike the conventional NSLC, we treat the archive as the end goal, akin to a quality-diversity
algorithm. In our case, we maintain an unstructured archive with a fixed maximal density.
Archive erosion is addressed using measures suggested in [61].

The process is as follows: after evaluating the fitness of the entire population, models are
added to the archive if its novelty is above a fixed threshold θ or, given µα

1 , µ
α
2—its two

nearest neighbours in the archive—it ϵ-dominates µα
1 and has a distance from µα

2 greater
than θ. We define ϵ-domination as proposed by Cully [61]: x1 ϵ-dominates x2 if

1. ρ(x1) ≥ (1− ϵ)ρ(x2)

2. f(x1) ≥ (1− ϵ)f(x2)

3. (ρ(x1)− ρ(x2)) · f(x2) > −(f(x1)− f(x2)) · ρ(x2)
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Bear in mind that ϵ-domination is only used to decide whether models are archived. Pareto
dominance is still employed for ranking the population.

While we initially used a traditional NSLC, the yield of good models for analysis is bounded
by the elite population in the final generation, less than one hundred. After moving to
a quality-diversity scheme, we tested a dynamic archival threshold and measures against
archiving too many or too few models. However, some models exploded in size, as high as
36 states, due to the explorative nature of one of the novelty metrics used. This resulted
in unpredictable memory consumption reaching the order of terabytes. Hence, we fix the
maximal density θ and enforce a strict maximum of ten states per model—a reasonable
upper bound given findings from the genetic algorithm runs. When a model is over ten
states, a mutation-like operator reduces it to one of its subgraphs whose number of states is
less than ten. We further note the value for θ varies across metrics.

6.3.2 Novelty Metrics

We propose two distance metrics between promoter models. Their formulations come
from two separate motivations. One metric attempts to discriminate models based on their
trajectory, whereas the other considers their topology.

6.3.2.1 Trajectory Metric

Looking at the very end of the pipeline, the trajectories of models are the main statistical
objects used to estimate the MI. Thus, it is fair to assume that contrasting trajectories may
result in different MI evaluations. While this is not true in general, such a measure can
group models with similar trajectories, and local clusters can be analysed based on their
trends. As such, it remains a valuable measure.

Consider any of the OAS or MAS paradigms where activity is discrete and one active state
is indistinguishable from any other active state. Here, a model produces a collection of
binary time series, i.e. taking values zero or one. Note that each trajectory comes from
one cell only. The decoding classifier merely observes the activity of a cell and gives it a
label. The classifier should not be able to access the entire cell population’s continuous
range of behaviours to stay true to the cell’s capability of making decisions from a discrete
signal. This is why no averaging has taken place for the pipeline. However, as a means for
differentiation, the general behaviour of the system is well characterised precisely through a
population average.
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2.000 · TF4
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Figure 6.3: The process involved in getting the average trend of activity across all cells.

When trajectories of a model are averaged, they take a range of continuous values but can
persist to be noisy. Our addition of replicates can mitigate this noise, but our choice of
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replicates, 10, is already fixed to maintain an efficient pipeline. We turn to a convenient part
of our matrix exponential method for a more robust average to our advantage.

Recall that we derive a probability distribution for the next state at each time step and
sample a random state according to this distribution. If we keep the indicator for the state
as a vector of probabilities, however, we get a trajectory of probability distributions. This
is reminiscent of raising the transition matrix of a DTMC to an exponent. Given these
distributions, the expected value for each time point can be calculated accordingly. As
depicted in Fig. 6.4, the average trend with replicates indeed converges to this trajectory. It
captures the average behaviour of the system without increasing the number of replicates or
sampling any random numbers.

1 Replicate 10 Replicates 100 Replicates Expected Probabilistic Trajectory

Figure 6.4: The average activity trend as the number of replicates increases. The right-most
graph is the expected value of the trajectory of probability distributions derived from the matrix
exponential method. The activities come from the same model in Fig. 6.3.

The Jensen-Shannon divergence is employed to compute the distance between two average
trajectories, primarily for its information-theoretic interpretations and metric characteristics
under a square root. A direct application does not have any desirable interpretations,
however, as the activity trace is not exactly a probability distribution. It can be argued that
TF dynamics involve a finite energy resource, and the distribution of energy expenditure
drives its movement. However, this is not grounded in literature. We instead find the
probability distribution of a state being active at each time point and compare this to the
distribution at the same time point of the other trajectory. The average across all the distances
is then computed, which still maintains the qualities of a metric,

dtraj(vx1 ,vx2) =
1

Nt

Nt∑
i=0

√
dJS(vi

x1
,vi

x2
)

where vx is the average trajectory of model x, dJS is the JS-divergence, and Nt is the length
of the entire time series, i.e. before any cuts. In the study, Nt = 96.

6.3.2.2 Topology Metric

Another possible avenue for differentiating between promoter models is through their
architecture. Particularly, we are interested in the transition rates and the TFs they depend
on, if any. For instance, a commonality between two models could be the existence of a
shared path that passes through edges linearly dependent on dot6, sfp1, and then tod6. In
this case, they are more likely than others to have a similar sequence of Markovian jumps.
Furthermore, models that differ in the magnitude of their rates likely differ in how smooth
or noisy their trajectories are. These motivate a measure describing the structural difference
between promoter models.
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We first convert the model into a line digraph to capture the properties and connections
between edges. A line digraph is a result of converting each directed edge into a vertex and
each vertex into a directed edge. Suppose we have a graph with directed edges ev1,v2 and
ev3,v4 where vi refer to vertices they connect. In its line digraph representation, there is an
edge from vertex v′(ev1,v2) to vertex v′(ev3,v4) if and only if v2 = v3, i.e. one directed edge
leads to another. Upon completion, we get a directed graph with labelled vertices.

Next, we use the Wasserstein Weisfeiler-Lehman distance metric for discrete and continu-
ously labelled graphs [74]. Each vertex is discretely labelled by the TF it depends on—either
one of the five TFs or none at all—and continuously labelled by its rate. Note that rates are
distributed across the [−2, 2] interval in the log10 space. Therefore, we take the logarithm
base ten and standardise them between zero and one.

The calculation can only take place once the graphs are encoded into feature vectors. We
achieve this by performing m iterations of the Weisfeiler-Lehman embedding scheme. For a
graph G with vertices v1, . . . , v|G|, the discrete feature vector Xdiscrete is given as

Xdisc =

 l0(v1) l1(v1) . . . lm(v1)
...

...
. . .

...
l0(v|G|) l1(v|G|) . . . lm(v|G|)

 , lh(v) =

{
l(v) h = 0

hash(lh−1(v),N h−1(v)) h ≥ 1

where l(v) is the original discrete label of vertex v andN h(v) is the set of labels at iteration h
of vertices neighbouring v. A suggested extension to continuous labels [74] is given by

Xcont =

 a0(v1) a1(v1) . . . am(v1)
...

...
. . .

...
a0(v|G|) a1(v|G|) . . . am(v|G|)


where the continuous labels ah(v) are similarly defined as their categorical counterparts

ah(v) =

{
a(v) h = 0
1
2

(
ah−1(v) + 1

deg(v)

∑
u∈N (v) a

h−1(u)
)

h ≥ 1

where a(v) is the original continuous label of vertex v and N (v) is the set of its neighbours.
Now, suppose we have computed the feature vectors of line digraphs G and G′ as indicated by
X and X ′. We compute the pairwise difference matrices Ddisc and Dcont with entries

(Ddisc)ij =
1

m

m∑
k=0

dham
(
(Xdisc)ik, (X

′
disc)jk

)
(Dcont)ij =

1

m

m∑
k=0

deuc
(
(Xcont)ik, (X

′
cont)jk

)
where dham and deuc are the Hamming and Euclidean distances respectively. We then adapt
the original method to consider both discrete and continuous labels by assigning

D =
1

2
(Ddisc +Dcont)

and thus computing the 1-Wasserstein distance

dtop(X,X ′) = min
P∈Γ(X,X′)

⟨P,D⟩
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where P is any matrix with row and column sums equal to 1/|G| and 1/|G′| respectively.

Note that we could have solved for the Wasserstein distances corresponding to Ddisc and
Dcont separately and took an average. We chose the above method for no particular reason.
We also point out that we could have included the activity of states, but we decided against
it for the purposes of being paradigm-agnostic and simpler in general. In agreement with
the original study, we choose m = 3 iterations of the embedding scheme.

6.3.3 Nearest Neighbours Calculation

As with novelty search, the distance between a model and its k-nearest neighbours makes up
its novelty score. Due to the metric nature of the proposed distance measures, we can employ
space-partitioning data structures that take advantage of metric space properties.

For efficiency reasons, we pre-compute the feature vectors of promoter models and use them
for distance calculations. For the trajectory metric, feature vectors come in arrays of length
96. Metric spaces with elements that can be expressed as vectors benefit from algorithms
where, for example, midpoints can be calculated between two arbitrary points. We use ball
trees to compute our trajectory distances.

For the topology metric, feature vectors come in arbitrary-sized 2D matrices with width m.
While these could be flattened to attain a vector representation, they lose their structure and
therefore lead to incorrect pruning of the search space. As such, we treat it as an arbitrary
metric space where only the distances between two points and not their representations
are accessible. Vantage point trees, M-trees, and cover trees are data structures that allow
for this. However, due to the high intrinsic dimensionality of the space, it is not as good
as a brute-force approach taking symmetry into account. For this reason, we resort to
multiprocessing for speed gains.

A simple test to confirm our reasoning is by estimating the intrinsic fractal dimensionality
of the metric space. We use the method of manifold-adaptive local dimension estimation
[65]. To begin with, we randomly generate 2000 models with states that are uniformly likely
to be anywhere between two to ten. Then, their pairwise distance matrix is computed using
the topology metric and estimated its intrinsic dimensionality. We find estimates of about
80. This makes sense as we have two labels per edge, and a fully connected ten-state model
has 45 edges, amounting to at most 90 dimensions.
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Chapter 7

Results and Discussion

In this chapter, we highlight and discuss findings from the evolutionary search. We begin
by examining results from the genetic algorithm and the role of certain parameters of the
setup that contribute to their trends. Then, we present the best models derived from our
method and analyse them through novelty search results. Follow-up experiments to support
our hypotheses are also mentioned.

7.1 Evolutionary Trends and Findings

This section primarily focuses on the genetic algorithm. A total of 36 runs were performed,
each representing different parameter combinations. Due to this large number, we only
present snapshots of the results where necessary.

7.1.1 Maximum Fitness

The genetic algorithm found models with MI as high as 1.3 bits as listed in Table 7.1. As
expected, larger population sizes allow more models to be considered and thus enable it to
find better models on average. Regardless of size, however, we note that some runs appear
to converge to local optima. For example, MAS runs with 1500 models do not necessarily
find the best models despite their high average fitnesses. This could be the case of the
elite population converging to a similar non-optimal but fit architecture. We explore this
hypothesis later. Another possibility is the selective pressure being too high, as backed by
OAS runs with 1500 models finding better populations with a lower elite ratio.

The most important extrapolation from these results is the comparable fitnesses found for
all three paradigms, despite their increasing generality. We find that the simplest paradigm,
OAS, is capable of encoding signals just as well as the other two. This is supported by
current literature where models proposed typically possess only one active state and where
the consensus is that gene activity is considered discrete. However, another possibility is the
high dimensionality of the more general paradigms, limiting the likelihood of finding the
best models. We later examine the architecture of good models from MAS and SWA and see
if they bear any resemblance with the simplest paradigm.

As with each run, statistics were recorded for every generation. The elites’ fitness trends are
plotted in Fig. 7.1. The average fitness appears to stagnate past a few hundred iterations,
and OAS models are optimised quicker than the rest.
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Population
Paradigm

One Active State Multiple Active States
Spectrum of

Weighted Activities

5% Elite
1.221b
1.181b

1.231b
1.166b

1.195b
1.108b

1.165b
1.088b

1.244b
1.185b

1.217b
1.153b

500
10% Elite

1.295b
1.181b

1.275b
1.189b

1.265b
1.190b

1.205b
1.124b

1.284b
1.141b

1.237b
1.113b

5% Elite
1.289b
1.222b

1.267b
1.218b

1.318b
1.177b

1.268b
1.171b

1.277b
1.203b

1.236b
1.182b

1000
10% Elite

1.316b
1.248b

1.327b
1.226b

1.314b
1.187b

1.295b
1.194b

1.264b
1.200b

1.272b
1.177b

5% Elite
1.340b
1.247b

1.327b
1.259b

1.233b
1.174b

1.328b
1.196b

1.286b
1.206b

1.289b
1.200b

1500
10% Elite

1.339b
1.255b

1.295b
1.213b

1.298b
1.224b

1.300b
1.216b

1.322b
1.217b

1.294b
1.214b

Initial No. of States 4 8 4 8 4 8

Table 7.1: Maximum and average fitness of the elite population found by the evolutionary search
under certain parameters. Note that the number of iterations is equal to the population size. The
largest fitness values per column are in bold.

0 200 400 600 800 1000 1200 1400
Iteration

0.4

0.6

0.8

1.0

1.2

Fi
tn

es
s

(M
I)

One Active State
Multiple Active States
Spectrum of Weighted Activities

Figure 7.1: The trend for the average fitness of the elite population for all 12 runs with a
population of 1500. Lines coloured by activity paradigm.

7.1.2 Convergence in Size

Fig. 7.2 similarly shows the trends of the average number of states for the elite population
of the same 12 runs. Regardless of the initial population, the average number of states
converges to around three to five. We believe this is an indication of the genetic algorithm
converging to an optimal set of architecture sizes. We believe models with any lesser states
are too simple to capture complex behaviour, and those with significantly more states
produce trajectories that are too noisy to be reliably decoded.

Simpler paradigms have slightly more states on average. This is reasoned by the capability
of activity weights or the presence of another active state to encode more information with
fewer states. The next section illustrates this fact.

A noticeable trend also occurs at the start of every run. For populations with an initial
number of states equal to eight, the average number of states drops significantly within the
first hundred generations. The case is similar but less pronounced for populations that begin
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Figure 7.2: The trend for the average number of states of the elite population for all runs with a
population of 1500. Lines coloured by activity paradigm.

in the four-states mark. We believe this is attributed to the curse of dimensionality involved
with optimising weights and connections for a large Markov chain. Furthermore, we can
draw parallels to stepping stones, as similarly pointed out by Lehman [59]. The crossover
operator assigns each offspring a subgraph component from each parent. As small models
become quite optimised, the offspring in later generations inherit efficient components from
their parents, possibly making them fitter with size. Just as soon as the 100th iteration
passes, the average number of states begins to increase, but only past a certain point.

7.1.3 Reversed and Balanced Penalties

While the above genetic algorithm runs have no penalties, we initially explored their in-
tegration to control the genetic trends. As depicted in Fig 7.2, the search naturally steers
itself towards a number of states rather than monotonically increasing with iteration. This
suggests there is no need for penalising large models.

However, we previously mentioned that the curse of dimensionality might be preventing
large models from being optimised fast enough, leading to the elite population being filled
with smaller models and successive generations following suit. To verify this claim, we
consider penalising smaller models to steer the search towards larger models. We further
consider a penalty for models deviating from a number of states. We call these the reversed
and balanced penalties, respectively and define them as follows

penaltyrev(x) = 2− 2 · exp
{
−
(

1

m
max{0, N − states(x)}

)n}
penaltybal(x) = 2− 2 · exp

{
−
(

1

m
(states(x)− statestarget)

2

)n}
Two is chosen as it is the maximum MI attainable given four environmental conditions to
discriminate against. Here, m controls the horizontal scaling and n controls the steepness of
the penalty. In our case, we set m = 8 and n = 6. Note that it is applied as

f(x) = max{0,MI(x)− penalty(x)}

Shown in Fig. 7.3 are such trends for these two penalty schemes. It appears that the balanced
penalty successfully keeps the average number of states within a small interval about the
target number of states. Similarly, the reversed penalty converges to some number of states.
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However, as with both schemes, their fitnesses are subpar from those found from the original
search with no penalties. Specifically, they either stagnate early or take too long to get
optimised. While further testing is required, we do believe models that are any larger
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Figure 7.3: The trend for the average fitness and number of states for genetic algorithms with a
balanced penalty centred at six states and a reversed penalty, both with m = 8 and n = 6

produce trajectories that are more prone to noise due to their number of states.

7.1.4 Visualising the Searched Space

An initial hypothesis was that certain runs were converging to local optima, with elites
becoming nearly identical in architecture. We may find the pairwise distances between
models in the entire population using our topology metric to verify this. Fig. 7.4 presents
two visualisations for the resulting population of a genetic algorithm run. Indeed, the elites
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Figure 7.4: (Left) the distance matrix under the topology metric and (Right) its corresponding
multi-dimensional scaling (MDS) plot with two components. Each point in the MDS plot
corresponds to a model coloured by their fitness. The population is derived from the genetic
algorithm run under OAS with a population of 1500, 10% of which are elites, and eight as the
initial number of states.

are similar in architecture. This is indicated by the dark region in the upper-left corner
of the distance matrix and the points closely clustered together in the MDS plot. This is
a primary motivation for our novelty search setup, whereby a collection of fit and diverse
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solutions are maintained. The MDS plot further demonstrates the unevenness of the search
space covered, with dense and sparse regions throughout. Our novelty search maintains a
fixed density within the archive.

7.2 Characteristics of High MI Models

This section analyses models from the evolutionary search with exceptionally high MI.

7.2.1 The Promoter Hall of Fame

We highlight the best models found under each activity paradigm. As certain architectures
were extremely common, we selectively chose to present diverse examples and, whenever
necessary, mention their high frequency, a possible indication of their faithfulness to reality.
In the following diagrams, TFs are indexed from zero and are given in order by: maf1, mig1,
dot6, tod6, and sfp1.

We first consider models with one active state. Across all the runs, most elites have a
chain-like architecture with three, four, or five states, with one end being the active state.
This structure is exhibited by the first two models in Fig 7.5. A commonality between
all chain-like architectures is the pairs of TFs that each reversible pair of directed edges
correspond to. We typically find pairs such as: maf1 and sfp1; mig1 and tod6; and mig1
and dot6, with the first two occurring between two inactive states and the latter between an
active state and an inactive state. All the models in Fig. 7.5 have this reversible edge of mig1
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Figure 7.5: Models under the OAS paradigm with high MI. The first and second models listed
represent more than 50% of the best models, only differing in the permutations of specific TF
pairs making up each edge.

and dot6 connecting to the active state, arguably the most important edge for OAS models.
We briefly discuss this phenomenon in the next subsection.

Moving onto models with multiple active states, similar pairs of TFs can be observed, as
shown in Fig. 7.6. Chain-like architectures also dominate the elite population but with
considerably fewer five-state chains. Visibly, there is a resemblance to OAS models in that
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active states tend to be grouped. Transitions between active states follow the same pairs of
TFs as previously between two inactive states.
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Figure 7.6: Models under the MAS paradigm with high MI. Active states emerge in groups.

Finally, models with weighted activities are depicted in Fig. 7.7. Unsurprisingly, they are
much simpler in architecture than the previous two. Once again, chain-like structures make
up most of the top models—this time, however, with the appearance of three-state chains.
The distribution of weights across the states favours the grouping of active states in clusters
like in MAS. Some models have nearly identical weights, and some have weights forming a
gradient to produce smoother, more interpolated trajectories.
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Figure 7.7: Models under the SWA paradigm with high MI. Architecture is smaller, but the
spectrum of activities more than makes up for it in encoding information.
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7.2.2 Blueprints for an Effective Architecture

We ran a novelty search with a population of 1000 under the topology metric. The result
was an archive of 1489 fit and diverse, uniformly interspersed models. From this, we aim to
find common structural characteristics that make up a good model. Here, we focus on the
topology metric for its direct involvement with a model’s architecture.

Contrary to the genetic algorithm results, the archive is spaced more uniformly, as indicated
by the MDS plot in Fig. 7.8. However, we note that models in the archive have good average
MI but not anywhere on the level of the maximum MI found by the genetic algorithm. The
average archive fitness came around to about 0.691, whereas the entire population (including
non-elites) for the genetic algorithm we have considered is 0.280. We believe this is the
case of architecture weights not being optimised fully, as the search is balancing multiple
objectives at once. With a larger number of generations, the archive should further improve
performance, whereas that of the traditional genetic algorithm converges prematurely. We
maintain, however, that the connections and relationships between TFs within the archive
remain important.
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Figure 7.8: MDS plot of models from the novelty archive with distances calculated by the
topology metric and points highlighted based on (Left) fitness, (Middle) average logarithmic
rates, and (Right) number of states. The archive is from an NSLC run under the OAS paradigm.

Note that the topology metric captures the subtleties within the model’s architecture, as
indicated by the clear patterns when points are highlighted based on their average rates or
number of states. From these plots alone, we can cross-reference the areas with the best
fitness with those of the other two plots to see what characterises such models, e.g. average
logarithmic rates are near zero. Even so, we are more interested in the dynamics of TFs and
their relationships that form a good model.

We have seen in the previous subsection TFs that come in pairs. If we were to analyse their
appearance in the results of genetic algorithms, however, there is some bias induced by the
selective pressure and cross-breeding between elites that skews the figures to some fixed
architecture. As such, we bring our analysis to the archive found.

Measuring the frequency of pairs of edges, we arrive at the histogram in Fig. 7.9. While
the archive is constantly replaced with better models during the search, if the number
of iterations is too short, the ”borders” of the archive may still be underdeveloped. We
separate the models into three classes, increasing in fitness, as an additional measure. A
clear preference for dot6 and sfp1 is suggested by our findings. This pair does not have the
highest mutual information together, a title belonging to mig1 and dot6—the second most
frequent pair to appear. However, looking through their nuclear traces as in Fig. 6.1, we find
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they have a nearly exact complementary set of nuclear traces. We say complementary in the
sense that when one TF enters the nucleus, the other leaves. The case is similar for tod6 and
sfp1, but dot6 has a less noisy trace. Despite being inconclusive, the slight preference for
dot6, when paired with a constant rate, may also be attributed to its clearer signals.
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Figure 7.9: The percentage of model edges using some pair of TFs to connect between two states.
The top row is representative of the entire archive, whereas the bottom three are different equally
sized echelons of fitness. For example, the second row comprises the top 33% models. Note the
scale of the second row is twice as large as the bottom two.

On the other hand, we also analyse the TF groups the models take as input in relation to the
maximum MI attainable. A similar fitness-based division is performed, shown in Fig. 7.10.
As expected, incorporating all the TFs admits the highest MI ceiling. However, choosing
TFs with a large collective MI does not guarantee a sound architecture. Here, again, dot6
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Figure 7.10: The percentage of models that depend on a group of TFs, i.e. have rates dependent
on them. Similarly, the top row is representative of the entire archive, and the bottom three are
the top models within their corresponding brackets.

and sfp1 are favoured over pairs with more information. Another example is the pairing of
maf1, dot6, and tod6 appear to be underutilised. Although theoretically high in MI, neither
TF complement the other. As a rule of thumb, the best TFs to use are those with suitable
complementary pairings and have few redundancies in their environmental encoding.
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7.2.2.1 The Chain Architecture

We found that the genetic algorithm often converged to models with a chain-like architecture,
utilising a particular set of TF pairs to move between two given states. This linear structure
often has an active state on one of its ends. We attempt to understand it from the context of
models in the simplest paradigm—those with one active state.

A0I0

1.000 · TF4

1.000 · TF2

Figure 7.11: A two-state model with an edge
pair depending on dot6, indexed by two, and
sfp1, indexed by four. These TFs have com-
plementary nuclear traces during stress.

In the previous subsection, we found the best TF
pairings to be selected for their complementary
behaviour. Consider a small two-state model
utilising two complementary TFs in dot6 and
sfp1 as in Fig. 7.11. For their traces, we refer the
reader to Fig. 6.1. In the event of carbon stress,
dot6 accumulates within the nucleus, making it
extremely likely for the system to be in the active
state. While in the active state, we only move
back to the inactive state once the concentration
of sfp1 returns to normal. If, by chance, we move
back to the inactive state before this, the like-
lihood of returning to the active state remains

high. Thus the system stays in the active state until the concentrations stabilise. This chain
acts as a noise suppression mechanism, keeping the activity from rapidly switching.
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Figure 7.12: The best chain found by the ge-
netic algorithm with one active state.

Now, consider when subunits are chained to-
gether. We bring up the best model found in the
one-active state paradigm as in Fig. 7.12. Here,
the pairs of TFs in between states are comple-
mentary in one environment. While not appar-
ent at first, notice that at any inactive state, the
shortest path to the active state relies on the con-
centration of TFs: mig1 and sfp1, whereas the
active state moves to any of the inactive states
via paths relying on the TFs: maf1, dot6, and
tod6. Analysing their nuclear concentration data
shows that these two groups are strongly comple-
mentary in the carbon stress environment and
somewhat complementary in the other two envi-
ronments. In fact, analysing the linear paths of
other found chain models confirms the same set
of these two groups.

In the event of carbon stress, for example, this
model moves as far away as possible from the
active state, reaching the inactive state at the end.
While the stochastic system could still make jumps to the next state, chaining these inactive
states makes it unlikely to reach the active state until the concentrations go back to normal.
With this in mind, we can attribute the length of the inactive state chain almost as a lagging
mechanism before the gene is switched back to active. Short chains may not be enough to
prevent the gene from moving to the active state, and extremely long chains may keep the
gene inactive for too long. As such, we find chain models with bounded lengths.
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A natural extension is to likewise chain the active states. This behaviour is exhibited by
some models found by the genetic algorithm under the MAS paradigm.

7.2.3 Dynamics of Activity Trajectories

Recall that the dynamics of a model are partially captured by its average trajectory. Consider
finding the pairwise trajectory distances between models in the same genetic algorithm run
as previously. Fig. 7.13 depicts the resulting distance matrix and MDS plot.
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Figure 7.13: (Left) the distance matrix under the trajectory metric and (Right) its corresponding
MDS plot with two components. Each point in the MDS plot corresponds to a model coloured
by their fitness. The population is derived from the genetic algorithm run under OAS with a
population of 1500, 10% of which are elites, and eight as the initial number of states.

We find the trajectory metric can quantify the similar behaviour of elites, as is apparent with
the dark upper-left region of the matrix. However, unlike before, we find two diametrically
opposite clusters in the MDS plot. Taking one point from each cluster and calculating their
trajectories, we see they are essentially flipped in terms of activity as in Fig. 7.14.
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Figure 7.14: Average trajectories of two models belonging to one of the two opposite clusters in
the MDS plot.

From the point of view of the machine-learning decoder, flipping the activity signal makes
no difference to the amount of information it possesses. With this symmetry, one can
immediately interpret the behaviour of other regions within the MDS plot. The two ends of
the spiral are the trivial trajectories, with the gene either always active or inactive, and those
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in the middle are somewhere between the flipped versions of the elite trends, e.g. possessing
smaller peaks. Sampling models from these regions confirm this. Most high MI models
share the same trends shown in Fig 7.14, which resemble the nuclear concentration data of
TFs: dot6, tod6, and sfp1. This makes sense given that chain-like architectures are heavily
dependent on the concentrations of these TFs to move between states.

We initially thought that the models’ quality of having average trajectories similar to TFs
nuclear traces was a local optimum. In search of more non-trivial trajectories, we seek to
evolve models purely based on their trajectories. Results from the novelty search under
the trajectory metric yielded an archive of 1010 models. An MDS plot is given in Fig. 7.15.
Models sampled from the extreme ends produce the exact same trajectories as above. We
hypothesise that this trend is likely optimal and is a result of the TFs accessible. With the
addition of more TFs diverse in behaviour, e.g. oscillatory, we may find a different optimal
trajectory.
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Figure 7.15: MDS Plot of models from the novelty archive with distances calculated by the
topology metric. The archive is from an NSLC run under the OAS paradigm.
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Chapter 8

Conclusion

In this study, we formalised promoter models and developed a methodology to optimise
them for encoding extracellular information.

We framed promoter models as time-inhomogeneous continuous-time Markov chains and
considered three increasingly general paradigms for gene activity. We showed that one
active state models can produce comparable mutual information estimates to the other
two, with chain-like architectures being the most successful. Multiple active state models
were often found to have active states connected in components, resembling a large active
state. Models with a spectrum of weighted activities resulted in simpler architectures but
appeared more challenging to optimise than the other two due to their significantly higher
dimensionality.

We presented a matrix exponential approximation for simulating promoter models and
showed it is orders of magnitude faster yet produces similar trajectories with the Gillespie
algorithm for time-dependent propensities. We also showed how it could be adapted to
simulate the average activity trend for a model quickly. We remark, however, that our
method becomes resource expensive when the number of states is considerably high.

To complete the evaluation pipeline, we pursued a trade-off between the number of replicates
and the type of machine learning classifier to keep simulation and decoding times within
the same order of magnitude with as high accuracy as possible. Despite this, further
improvements could be made to the machine-learning pipeline, particularly in choosing
a framework that can better capture the temporal attributes of the time series data. The
TFs we currently use exhibit simple dynamics during stress. For example, when oscillatory
TFs are introduced, a more sophisticated decoder may be required to maintain a high lower
bound estimate for MI.

We employed genetic algorithms with a set of operators that preserve the feasibility of
models and demonstrated they could successfully find models with high MI. However, we
mention its orchestration required incredible effort and testing.

Finally, we proposed two distance metrics between promoter models, one looking at its
topology and another at its trajectory. We showed both are useful tools for visualising the
model search space and performed a novelty search with local competition to evolve an
archive of fit and diverse models for which we analysed extensively.
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8.1 Future Work

We chose to decouple mRNA from the model for a variety of reasons. However, once a model
has been optimised, we could reintroduce mRNA, albeit at the cost of having to use an SSA.
The trends of mRNA could then be compared with what might be expected in practice, as is
usually the process for transcriptional modelling studies.

We mentioned previously the oscillatory nature of some TFs. Our method has yet to be
extensively tested on it. An interesting setup is to allow the genetic algorithm access to
multiple TFs, some incredibly noisy, some with clear peaks, and some oscillatory. The
method can thus be evaluated by its ability to use certain TFs to its advantage. For example,
we found earlier that complementary TFs are often linked. We could test if a phase shift in
oscillations is able to mimic this noise reduction technique.

While a few tests have been run, we have not extensively studied the resulting architecture
sizes when the set of TFs is constrained. Further work could be done to establish whether
the model sizes depend on the number of TFs or if an upper limit exists to which the model
becomes too noisy.

We believe other studies can benefit from the methods within this paper and hope to make
the current repository more accessible.
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